
2026/02/03 19:58 1/4 LU03f - Callback Funktionen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU03f - Callback Funktionen

Callback Funktionen sind eine klassische Anwendung von First-Class- und Higher-Order-Functions.

Callbacks in der GUI Programmierung

Die Entwicklung von grafischen Benutzeroberflächen (GUIs) unterscheidet sich in vielerlei Hinsicht von
der Entwicklung von Konsolen- oder Terminalanwendungen. Eine der Hauptunterschiede ist, dass GUI-
Anwendungen ereignisgesteuert sind. Das bedeutet, dass statt in einer sequenziellen Reihenfolge von
oben nach unten durch den Code zu gehen, die Ausführung des Codes oft von Benutzeraktionen wie
Mausklicks, Tastatureingaben oder anderen Ereignissen ausgelöst wird. Hier kommen Callbacks ins
Spiel.

Was sind Callbacks?

Ein Callback ist eine Funktion, die an eine andere Funktion als Argument übergeben wird und zu
einem späteren Zeitpunkt in Reaktion auf ein Ereignis ausgeführt wird. In der GUI-Programmierung
werden Callbacks häufig verwendet, um auf Benutzerereignisse zu reagieren.

Warum werden Callbacks in der GUI-Programmierung verwendet?

Ereignisgesteuerte Natur von GUIs: Da GUI-Anwendungen darauf warten, dass1.
Benutzerereignisse auftreten, können wir nicht vorhersehen, wann diese Ereignisse eintreten
werden. Callbacks bieten eine Möglichkeit, spezifische Codeblöcke in Reaktion auf bestimmte
Ereignisse auszuführen.
Modularität und Wiederverwendbarkeit: Durch die Verwendung von Callbacks können Sie2.
spezifische Aktionen isolieren, was den Code sauberer und wiederverwendbarer macht.
Flexibilität: Callbacks ermöglichen es, unterschiedliche Aktionen für dasselbe Ereignis zu3.
definieren, je nach Kontext oder Zustand der Anwendung.

Beispiel

In vielen GUI-Frameworks, einschließlich tkinter in Python, wird ein Button-Widget mit einem
Callback verknüpft, um zu definieren, was passieren soll, wenn der Benutzer auf den Button klickt.

import tkinter as tk

def on_button_click():
 print('Der Button wurde geklickt!')

root = tk.Tk()
button = tk.Button(root, text='Klicken Sie mich', command=on_button_click)
button.pack()

Last update:
2024/09/11 09:06 modul:m323:learningunits:lu03:callbacks https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1726038405

https://wiki.bzz.ch/ Printed on 2026/02/03 19:58

root.mainloop()

In diesem Beispiel ist on_button_click der Callback, der aufgerufen wird, wenn der Benutzer auf
den Button klickt.

Fazit

Callbacks sind ein essenzielles Konzept in der GUI-Programmierung und bieten eine effektive
Möglichkeit, auf Benutzerereignisse zu reagieren und einen dynamischen, interaktiven Workflow für
Anwendungen zu erstellen.

Callbacks in der Asynchronen Programmierung

Asynchrone Programmierung ist ein Ansatz, bei dem Operationen ausgeführt werden können, ohne
den Ablauf des gesamten Programms zu blockieren. Ein häufiges Szenario für asynchrone Aufrufe sind
Netzwerkanfragen, z. B. API-Aufrufe, bei denen nicht vorhersehbar ist, wie lange sie dauern werden.

Warum Callbacks in asynchronen Aufrufen verwenden?

Nicht-blockierende Natur: Bei einem synchronen Aufruf würde Ihr Code anhalten und warten,
bis die Anfrage abgeschlossen ist. Bei einem asynchronen Aufruf kann der Code weiter
ausgeführt werden, ohne auf die Antwort zu warten. Ein Callback ermöglicht es, spezifischen
Code auszuführen, sobald die Antwort eintrifft.
Strukturierte Code-Organisation: Durch die Verwendung von Callbacks können Sie
spezifische Aktionen oder Folgeverarbeitungen klar definieren, die nach Abschluss einer
Operation ausgeführt werden sollen.
Fehlerbehandlung: Callbacks können so gestaltet werden, dass sie sowohl mit normalen
Daten als auch mit Fehlern umgehen können. Dies ist besonders nützlich bei Netzwerkanfragen,
bei denen viele Dinge schief gehen können.

Warum nicht einfach den Code direkt nach dem API-Aufruf ausführen?

Unvorhersehbare Antwortzeiten: Bei synchronem Code, der auf eine Netzwerkanfrage folgt,
haben Sie keine Kontrolle darüber, wann die Antwort eintrifft. Ihr gesamtes Programm würde
warten, was zu einer schlechten Benutzererfahrung führen kann.
Ressourceneffizienz: Asynchrone Aufrufe ermöglichen es, Ressourcen effizienter zu nutzen.
Während Sie auf eine Antwort warten, kann die CPU andere Aufgaben erledigen.
Klarheit und Wartbarkeit: Durch das Trennen der Logik in verschiedene Funktionen (z. B.
eine für den API-Aufruf und eine andere für die Verarbeitung der Antwort) wird der Code
sauberer und leichter zu warten.

Asynchron Programmieren in Python

In modernen Anwendungen, insbesondere bei I/O-intensiven Aufgaben wie Netzwerkanfragen,
Datenbankzugriffen oder Dateioperationen, ist es oft erforderlich, Operationen asynchron
auszuführen, um die Gesamtleistung der Anwendung zu verbessern. Python bietet mit `async` und
`await` ein leistungsfähiges Werkzeug zur asynchronen Programmierung.

2026/02/03 19:58 3/4 LU03f - Callback Funktionen

BZZ - Modulwiki - https://wiki.bzz.ch/

Was sind async und await?

async: Das Schlüsselwort async definiert eine Funktion als asynchron. Eine solche Funktion
gibt ein „Coroutine“-Objekt zurück, das später mit await aufgerufen werden kann.
await: Das Schlüsselwort await wird verwendet, um das Ergebnis einer asynchronen
Operation abzurufen. Es kann nur innerhalb einer async-Funktion verwendet werden.

Beispiele

Einfaches Beispiel mit sleep()

Ein einfaches Beispiel für die Verwendung von async und await:

import asyncio

async def say_hello():
 print("Hallo")
 await asyncio.sleep(1)
 print("Welt")

if __name__ == '__main__':
 asyncio.run(say_hello())

In diesem Beispiel wird die Funktion say_hello mit dem Schlüsselwort async definiert, was
bedeutet, dass sie asynchron ist. Innerhalb dieser Funktion wird await verwendet, um die
Ausführung für eine Sekunde zu pausieren, bevor Welt gedruckt wird.

Beispiel mit API-Call

Dieses Beispiel ruft Daten von einer Dummy-API ab und verwendet async und await. Um
asynchrone HTTP-Anfragen in Python durchzuführen, können Sie die httpx-Bibliothek verwenden.
Dies ist eine moderne HTTP-Client-Bibliothek, die sowohl synchronen als auch asynchronen Code
unterstützt.

import httpx
import asyncio

async def fetch_data():
 async with httpx.AsyncClient() as client:
 response = await
client.get('https://run.mocky.io/v3/685db531-06e7-4d66-bbf6-99de9f2feab3?moc
ky-delay=3000ms')
 return response

async def main():
 result = await fetch_data()
 print(result)

Last update:
2024/09/11 09:06 modul:m323:learningunits:lu03:callbacks https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1726038405

https://wiki.bzz.ch/ Printed on 2026/02/03 19:58

if __name__ == '__main__':
 asyncio.run(main())

M323-LU03

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1726038405

Last update: 2024/09/11 09:06

https://wiki.bzz.ch/tag/m323-lu03?do=showtag&tag=M323-LU03
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1726038405

	LU03f - Callback Funktionen
	Callbacks in der GUI Programmierung
	Was sind Callbacks?
	Warum werden Callbacks in der GUI-Programmierung verwendet?
	Beispiel
	Fazit

	Callbacks in der Asynchronen Programmierung
	Asynchron Programmieren in Python
	Was sind async und await?
	Beispiele
	Einfaches Beispiel mit sleep()
	Beispiel mit API-Call

