2026/02/03 23:24 1/5 LUO3f - Callback Funktionen

LUO3f - Callback Funktionen

Callback Funktionen sind eine klassische Anwendung von First-Class- und Higher-Order-Functions.

Callbacks in der GUI Programmierung

Die Entwicklung von grafischen Benutzeroberflachen (GUIs) unterscheidet sich in vielerlei Hinsicht von
der Entwicklung von Konsolen- oder Terminalanwendungen. Eine der Hauptunterschiede ist, dass GUI-
Anwendungen ereignisgesteuert sind. Das bedeutet, dass statt in einer sequenziellen Reihenfolge von
oben nach unten durch den Code zu gehen, die Ausfihrung des Codes oft von Benutzeraktionen wie
Mausklicks, Tastatureingaben oder anderen Ereignissen ausgeldst wird. Hier kommen Callbacks ins
Spiel.

Was sind Callbacks?

Ein Callback ist eine Funktion, die an eine andere Funktion als Argument tbergeben wird und zu
einem spateren Zeitpunkt in Reaktion auf ein Ereignis ausgefuhrt wird. In der GUI-Programmierung
werden Callbacks haufig verwendet, um auf Benutzerereignisse zu reagieren.

Warum werden Callbacks in der GUI-Programmierung verwendet?

1. Ereignisgesteuerte Natur von GUIs: Da GUI-Anwendungen darauf warten, dass
Benutzerereignisse auftreten, konnen wir nicht vorhersehen, wann diese Ereignisse eintreten
werden. Callbacks bieten eine Maglichkeit, spezifische Codebldcke in Reaktion auf bestimmte
Ereignisse auszufuhren.

2. Modularitat und Wiederverwendbarkeit: Durch die Verwendung von Callbacks kdnnen Sie
spezifische Aktionen isolieren, was den Code sauberer und wiederverwendbarer macht.

3. Flexibilitat: Callbacks ermdéglichen es, unterschiedliche Aktionen fur dasselbe Ereignis zu
definieren, je nach Kontext oder Zustand der Anwendung.

Beispiel

In vielen GUI-Frameworks, einschlieBlich tkinter in Python, wird ein Button-Widget mit einem
Callback verknUpft, um zu definieren, was passieren soll, wenn der Benutzer auf den Button klickt.

tkinter tk

on button click
‘Der Button wurde geklickt!'

root = tk.Tk
button = tk.Button(root, text='Klicken Sie mich', command=on button click

button.pack

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:

2024/09/11 09:13 modul:m323:learningunits:lu03:callbacks https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1726038805

root.mainloop

In diesem Beispiel ist on_button click der Callback, der aufgerufen wird, wenn der Benutzer auf
den Button klickt.

Fazit

Callbacks sind ein essenzielles Konzept in der GUI-Programmierung und bieten eine effektive
Maglichkeit, auf Benutzerereignisse zu reagieren und einen dynamischen, interaktiven Workflow far
Anwendungen zu erstellen.

Callbacks in der Asynchronen Programmierung

Asynchrone Programmierung ist ein Ansatz, bei dem Operationen ausgeflhrt werden kdnnen, ohne
den Ablauf des gesamten Programms zu blockieren. Ein haufiges Szenario fur asynchrone Aufrufe sind
Netzwerkanfragen, z. B. API-Aufrufe, bei denen nicht vorhersehbar ist, wie lange sie dauern werden.

Warum Callbacks in asynchronen Aufrufen verwenden?

¢ Nicht-blockierende Natur: Bei einem synchronen Aufruf wirde Ihr Code anhalten und warten,
bis die Anfrage abgeschlossen ist. Bei einem asynchronen Aufruf kann der Code weiter
ausgefuhrt werden, ohne auf die Antwort zu warten. Ein Callback ermaoglicht es, spezifischen
Code auszufuhren, sobald die Antwort eintrifft.

e Strukturierte Code-Organisation: Durch die Verwendung von Callbacks kénnen Sie
spezifische Aktionen oder Folgeverarbeitungen klar definieren, die nach Abschluss einer
Operation ausgefuhrt werden sollen.

¢ Fehlerbehandlung: Callbacks konnen so gestaltet werden, dass sie sowohl mit normalen
Daten als auch mit Fehlern umgehen kdnnen. Dies ist besonders nitzlich bei Netzwerkanfragen,
bei denen viele Dinge schief gehen kdnnen.

Warum nicht einfach den Code direkt nach dem API-Aufruf ausfiihren?

¢ Unvorhersehbare Antwortzeiten: Bei synchronem Code, der auf eine Netzwerkanfrage folgt,
haben Sie keine Kontrolle dariber, wann die Antwort eintrifft. Ihr gesamtes Programm wurde
warten, was zu einer schlechten Benutzererfahrung fihren kann.

* Ressourceneffizienz: Asynchrone Aufrufe ermdglichen es, Ressourcen effizienter zu nutzen.
Wahrend Sie auf eine Antwort warten, kann die CPU andere Aufgaben erledigen.

e Klarheit und Wartbarkeit: Durch das Trennen der Logik in verschiedene Funktionen (z. B.
eine fur den API-Aufruf und eine andere flr die Verarbeitung der Antwort) wird der Code
sauberer und leichter zu warten.

Asynchron Programmieren in Python

In modernen Anwendungen, insbesondere bei I/O-intensiven Aufgaben wie Netzwerkanfragen,
Datenbankzugriffen oder Dateioperationen, ist es oft erforderlich, Operationen asynchron
auszufiihren, um die Gesamtleistung der Anwendung zu verbessern. Python bietet mit “async™ und
“await” ein leistungsfahiges Werkzeug zur asynchronen Programmierung.

https://wiki.bzz.ch/ Printed on 2026/02/03 23:24

2026/02/03 23:24 3/5 LUO3f - Callback Funktionen

Was sind async und await?

e async: Das Schlusselwort async definiert eine Funktion als asynchron. Eine solche Funktion
gibt ein ,Coroutine”-Objekt zurlick, das spater mit await aufgerufen werden kann.

e await: Das Schlisselwort await wird verwendet, um das Ergebnis einer asynchronen
Operation abzurufen. Es kann nur innerhalb einer async-Funktion verwendet werden.

Beispiel: Parallele Ausfuhrung von Aufgaben

Eine der Hauptvorteile von asynchroner Programmierung ist die Fahigkeit, mehrere Aufgaben parallel

auszufuhren, insbesondere wenn es um Aufgaben geht, die auf externe Ressourcen warten, wie z.B.
Netzwerkanfragen.

asyncio

async task 1
'Task 1 gestartet'
await asyncio.sleep
'Task 1 abgeschlossen'

async task 2
'Task 2 gestartet'
await asyncio.sleep
'Task 2 abgeschlossen'

async main
await asyncio.gather(task 1 task 2

__name___ ' main__ ':
asyncio.run(main

Beispiel: Asynchrone Dateioperation

In diesem Beispiel zeigen wir, wie Dateioperationen asynchron ablaufen konnen. Das Beispiel liest den
Inhalt von zwei Dateien asynchron.

aiofiles
asyncio
async read file(file name
async aiofiles.open(file name, 'r' file:

contents await file.read
f'Inhalt von {file name}: {contents}'

async main
await asyncio.gather
read file('filel.txt'
read file('file2.txt'

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: e . . _
2024/09/11 09:13 modul:m323:learningunits:lu03:callbacks https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1726038805

__name ' main_ ':
asyncio.run(main

Beispiel: API-Call mit Zeituberschreitung

Ein haufiges Problem bei Netzwerkanfragen ist die Notwendigkeit, eine maximale Wartezeit
festzulegen. Dies kann durch die Verwendung von Timeout-Parametern und asynchroner
Programmierung geldst werden.

httpx
asyncio
async fetch data

async httpx.AsyncClient client:

response = await

client.get('https://run.mocky.io/v3/685db531-06e7-4d66-bbf6-99de9f2feab3?moc
ky-delay=3000ms', timeout

response.text
httpx.RequestError exc:
f'An error occurred while requesting data: {exc}'

async main
await fetch data

__nhame ' main_ ':
asyncio.run(main

Beispiel: Daten von mehreren APIs gleichzeitig abrufen

Hier zeigen wir, wie mehrere API-Aufrufe parallel ablaufen kénnen, um die Effizienz zu verbessern.

httpx
asyncio
async fetch data(url
async httpx.AsyncClient client:

response = await client.get(url
response.json

async main
urls

"https://run.mocky.io/v3/685db531-06e7-4d66-bbf6-99de9f2feab3?mocky-delay=30
00ms'

"https://run.mocky.io/v3/685db531-06e7-4d66-bbf6-99de9f2feab3?mocky-delay=20
00ms'

https://wiki.bzz.ch/ Printed on 2026/02/03 23:24

2026/02/03 23:24 5/5 LUO3f - Callback Funktionen

results = await asyncio.gather(*(fetch data(url url urls
result results:
result
__name___ ' main_ ':

asyncio.run(main

Diese Beispiele zeigen verschiedene nutzliche Anwendungsfalle fir die asynchrone Programmierung
in Python. Besonders bei I/O-intensiven Aufgaben hilft sie, die Blockierung des Programms zu
vermeiden und die Gesamtleistung zu verbessern.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1726038805

Last update: 2024/09/11 09:13

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/callbacks?rev=1726038805

	LU03f - Callback Funktionen
	Callbacks in der GUI Programmierung
	Was sind Callbacks?
	Warum werden Callbacks in der GUI-Programmierung verwendet?
	Beispiel
	Fazit

	Callbacks in der Asynchronen Programmierung
	Asynchron Programmieren in Python
	Was sind async und await?
	Beispiel: Parallele Ausführung von Aufgaben
	Beispiel: Asynchrone Dateioperation
	Beispiel: API-Call mit Zeitüberschreitung
	Beispiel: Daten von mehreren APIs gleichzeitig abrufen

