
2026/02/03 07:19 1/3 LU03.L03 - Task Scheduler

BZZ - Modulwiki - https://wiki.bzz.ch/

LU03.L03 - Task Scheduler

Simpel: Alle Tasks haben identische Verzögerungen

import time
def task1():
 print('Task 1 executed!')

def task2():
 print('Task 2 executed!')

def task_scheduler(tasks, delay):
 for task in tasks:
 task()
 time.sleep(delay)

if __name__ == '__main__':
 tasks = [task1, task2]
 delay = 2
 task_scheduler(tasks, delay)

Expert: Jeder Task hat eine unterschiedliche Verzögerung

def task_scheduler_expert(tasks, delays):
 for task, delay in zip(tasks, delays):
 task()
 time.sleep(delay)

if __name__ == '__main__':
 tasks = [task1, task2]
 delays = [2,3]
 task_scheduler_expert(tasks, delays)

Erklärung

Schritt 1: Die task_scheduler-Funktion wird so geändert, dass sie eine Liste von
Verzögerungen akzeptiert, wobei jede Verzögerung einem bestimmten Task entspricht.
Schritt 2: Die zip-Funktion wird verwendet, um die Tasks und Verzögerungen in der for-
Schleife zu verbinden. Die zip-Funktion verbindet die beiden Listen (Tasks und Verzögerungen)
so, dass sie als Paare verarbeitet werden können. Für jeden Durchlauf der Schleife wird ein Task
und die entsprechende Verzögerung aus den beiden Listen entnommen und ausgeführt.
Schritt 3: Der Scheduler wird mit den Tasks und den individuellen Verzögerungen aufgerufen.

Diese Musterlösungen zeigen die Flexibilität von First-Class

Last
update:
2024/03/28
14:07

modul:m323:learningunits:lu03:loesungen:taskscheduler https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/taskscheduler

https://wiki.bzz.ch/ Printed on 2026/02/03 07:19

Functions in Python und wie man verschiedene
Verzögerungen in der Ausführung von Code hinzufügen
kann.

Exkurs zur ZIP-Funktion

Die zip-Funktion kombiniert die Elemente mehrerer Iterables (wie Listen oder
Tupel) und gibt einen Iterator von Tupeln zurück, wobei das erste Element in
jedem Argument das erste Element im ersten Tupel usw. ist. Im obigen Beispiel
würde die Verwendung von zip mit den Listen tasks und delays zu einem
Iterator führen, der die folgenden Tupel enthält:

(<function task1 at 0x10044d1b0>, 1)
(<function task2 at 0x10044d900>, 3)

Wenn du diesen Iterator in eine Liste umwandeln möchtest, kannst du die list-
Funktion verwenden. Zum Beispiel:

tasks = [task1, task2]
delays = [1, 3]

zipped_list = list(zip(tasks, delays))
zipped_list wäre nun: [(<function task1 at 0x10044d1b0>,
1), (<function task2 at 0x10044d900>, 3)]

Natürlich kann zip auch für andere Datentypen verwendet werden:

Definieren von zwei Listen
names = ['Alice', 'Bob', 'Charlie']
ages = [25, 30, 22]

Verknüfen von zwei Listen in eine neue Liste von Tuples
zipped_list = list(zip(names, ages)) # zipped_list wäre nun:
[('Alice', 25), ('Bob', 30), ('Charlie', 22)]

Verwenden der zip-Funktion, um die Listen zu kombinieren
und direkt mit dem Iterator zu interieren
for name, age in zip(names, ages):
 print(f'{name} is {age} years old')

Führt zur Ausgabe:

Alice is 25 years old
Bob is 30 years old
Charlie is 22 years old

2026/02/03 07:19 3/3 LU03.L03 - Task Scheduler

BZZ - Modulwiki - https://wiki.bzz.ch/

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/taskscheduler

Last update: 2024/03/28 14:07

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/taskscheduler

	LU03.L03 - Task Scheduler
	Simpel: Alle Tasks haben identische Verzögerungen
	Expert: Jeder Task hat eine unterschiedliche Verzögerung
	Erklärung

