2026/02/03 07:19 1/3 LU03.L03 - Task Scheduler

LUO3.L03 - Task Scheduler

Simpel: Alle Tasks haben identische Verzogerungen

time
taskl
'"Task 1 executed!'

task?2
'Task 2 executed!'

task scheduler(tasks, delay):
task tasks:
task
time.sleep(delay

__name__ __main__ ':
tasks taskl, task2
delay

task scheduler(tasks, delay

Expert: Jeder Task hat eine unterschiedliche Verzogerung

task scheduler expert(tasks, delays):
task, delay zip(tasks, delays):
task
time.sleep(delay

~_name_ __main_ ‘':
tasks taskl, task2
delays

task scheduler expert(tasks, delays

Erklarung

e Schritt 1: Die task scheduler-Funktion wird so geandert, dass sie eine Liste von
Verzdgerungen akzeptiert, wobei jede Verzogerung einem bestimmten Task entspricht.

e Schritt 2: Die zip-Funktion wird verwendet, um die Tasks und Verzégerungen in der for-
Schleife zu verbinden. Die zip-Funktion verbindet die beiden Listen (Tasks und Verzdgerungen)
so, dass sie als Paare verarbeitet werden kénnen. Fur jeden Durchlauf der Schleife wird ein Task
und die entsprechende Verzégerung aus den beiden Listen enthommen und ausgefuhrt.

e Schritt 3: Der Scheduler wird mit den Tasks und den individuellen Verzégerungen aufgerufen.

@ Diese Musterldsungen zeigen die Flexibilitat von First-Class

BZZ - Modulwiki - https://wiki.bzz.ch/

Last

;83238;/28 modul:m323:learningunits:lu03:loesungen:taskscheduler https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/taskscheduler

14:07

Functions in Python und wie man verschiedene
o Verzdgerungen in der Ausfuhrung von Code hinzufugen
kann.

Exkurs zur ZIP-Funktion

Die zip-Funktion kombiniert die Elemente mehrerer Iterables (wie Listen oder
Tupel) und gibt einen Iterator von Tupeln zurtck, wobei das erste Element in
jedem Argument das erste Element im ersten Tupel usw. ist. Im obigen Beispiel
wurde die Verwendung von zip mit den Listen tasks und delays zu einem
Iterator fuhren, der die folgenden Tupel enthalt:

function taskl at 0x10044d1b0 1
function task2 at 0x10044d900 3

Wenn du diesen lterator in eine Liste umwandeln mochtest, kannst du die 1ist-
Funktion verwenden. Zum Beispiel:

tasks taskl, task?2
delays 1, 3

zipped list = list(zip(tasks, delays
zipped list ware nun: [(<function taskl at 0x10044d1b0>,
1), (<function task2 at 0x10044d900>, 3)]

Naturlich kann zip auch flr andere Datentypen verwendet werden:

Definieren von zwel Listen
names 'Alice', 'Bob', 'Charlie'
ages 25, 30, 22

Verknufen von zwei Listen in eine neue Liste von Tuples
zipped list = list(zip(names, ages)) # zipped list ware nun:
[('Alice', 25), ('Bob', 30), ('Charlie', 22)]

Verwenden der zip-Funktion, um die Listen zu kombinieren
und direkt mit dem Iterator zu interieren
name, age zip(names, ages
f'{name} is {age} years old'

FOhrt zur Ausgabe:
Alice is 25 years old

Bob is 30 years old
Charlie is 22 years old

https://wiki.bzz.ch/ Printed on 2026/02/03 07:19

2026/02/03 07:19 3/3 LU03.L03 - Task Scheduler

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/taskscheduler

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/taskscheduler

	LU03.L03 - Task Scheduler
	Simpel: Alle Tasks haben identische Verzögerungen
	Expert: Jeder Task hat eine unterschiedliche Verzögerung
	Erklärung

