
2026/02/03 19:24 1/3 LU03.L10 - Timer und API-Call

BZZ - Modulwiki - https://wiki.bzz.ch/

LU03.L10 - Timer und API-Call

Einführung

Das bereitgestellte Programm demonstriert die Kraft der Asynchronität in Python. Es verwendet
asyncio und httpx für asynchrone Operationen und führt zwei parallele Aufgaben aus: Einen API-
Aufruf alle 3 Sekunden und einen Timer, der jede Sekunde hochzählt.

Komponenten-Erklärung

Callback-Funktion api_response_callback:1.
Diese Funktion wird als Callback verwendet und gibt die Daten aus, die von der API
empfangen wurden.
Es nimmt die response_data als Argument und gibt sie direkt in der Konsole aus.

Asynchrone Funktion fetch_data_from_api:2.
Diese Funktion ruft alle 3 Sekunden asynchron eine API auf.
Sie verwendet den httpx.AsyncClient, um eine asynchrone HTTP-Anfrage zu senden.
Nach Erhalt der Antwort von der API wird der bereitgestellte Callback mit den Daten
aufgerufen.
Die Funktion pausiert dann für 3 Sekunden, bevor sie erneut eine Anfrage an die API
sendet.

Asynchrone Funktion async_timer:3.
Diese Funktion fungiert als asynchroner Timer.
Sie verwendet asyncio.sleep für die Verzögerung von einer Sekunde.
In jeder Iteration ihrer Schleife gibt sie einen Zähler aus und erhöht ihn dann um eins.

Asynchrone Funktion main:4.
Dies ist die Hauptfunktion, die beide oben genannten asynchronen Funktionen parallel
ausführt.
Sie verwendet asyncio.create_task, um sowohl den API-Aufruf als auch den Timer als
separate, gleichzeitig laufende Aufgaben zu starten.
Sie wartet dann darauf, dass beide Aufgaben abgeschlossen sind.

Programmeinstiegspunkt if name == 'main':5.
Dies ist der Einstiegspunkt des Programms.
Er ruft die main-Funktion mit asyncio.run auf, was den Beginn der asynchronen
Ausführung markiert.

Zusammenfassung

Das Programm demonstriert, wie man asynchrone Operationen in Python effizient handhabt. Es zeigt,
wie man gleichzeitig einen asynchronen API-Aufruf und einen asynchronen Timer ausführt, ohne dass
der eine den anderen blockiert. Das Ergebnis ist eine nahtlose Ausführung beider Aufgaben, wobei
der Timer jede Sekunde hochzählt und alle 3 Sekunden eine API-Antwort ausgegeben wird.

import asyncio
import httpx

Last update:
2024/03/28 14:07 modul:m323:learningunits:lu03:loesungen:timer https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/timer

https://wiki.bzz.ch/ Printed on 2026/02/03 19:24

def api_response_callback(response_data):
 """
 Callback-Funktion, die aufgerufen wird, nachdem die API-Antwort
empfangen wurde.

 Args:
 - response_data: Die Daten, die von der API empfangen wurden.

 Returns:
 - None, da die Daten direkt in der Konsole ausgegeben werden.
 """
 print(f"API Response: {response_data}")

async def fetch_data_from_api(callback):
 """
 Diese Funktion ruft asynchron alle 3 Sekunden eine API
('https://hub.dummyapis.com/delay?seconds=3') auf, die eine
 Verzögerung von 3 Sekunden simuliert. Nachdem die Daten von der API
abgerufen wurden, wird der bereitgestellte
 Callback mit den Daten aufgerufen.

 Args:
 - callback: Die Callback-Funktion, die aufgerufen wird, nachdem die API-
Daten empfangen wurden.

 Returns:
 - None, da die Daten an die Callback-Funktion weitergegeben werden.
 """
 while True:
 async with httpx.AsyncClient() as client:
 response = await
client.get('https://hub.dummyapis.com/delay?seconds=3')
 callback(response)
 await asyncio.sleep(3)

async def async_timer():
 """
 Diese Funktion fungiert als asynchroner Timer, der jede Sekunde
hochzählt und den aktuellen Wert ausgibt.
 Sie verwendet `asyncio.sleep` für die Verzögerung und führt eine endlose
Schleife aus, die den Zähler jede Sekunde erhöht.

 Returns:
 - None, da der Zählerstand direkt in der Konsole ausgegeben wird.
 """

2026/02/03 19:24 3/3 LU03.L10 - Timer und API-Call

BZZ - Modulwiki - https://wiki.bzz.ch/

 count = 0
 while True:
 print(count)
 count += 1
 await asyncio.sleep(1)

async def main():
 """
 Hauptfunktion, die beide asynchrone Funktionen, `fetch_data_from_api`
und `async_timer`, parallel ausführt.
 Sie verwendet `asyncio.create_task` um die beiden Funktionen als
separate, gleichzeitig laufende Tasks zu starten.

 Returns:
 - None, da alle Ausgaben direkt in den jeweiligen Funktionen erfolgen.
 """

 api_task =
asyncio.create_task(fetch_data_from_api(api_response_callback))
 timer_task = asyncio.create_task(async_timer())

 await api_task
 await timer_task

if __name__ == '__main__':
 asyncio.run(main())

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/timer

Last update: 2024/03/28 14:07

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/timer

	LU03.L10 - Timer und API-Call
	Einführung
	Komponenten-Erklärung
	Zusammenfassung

