2026/02/03 19:24 1/3 LU03.L10 - Timer und API-Call

LUO3.L10 - Timer und API-Call

Einfuhrung

Das bereitgestellte Programm demonstriert die Kraft der Asynchronitat in Python. Es verwendet
asyncio und httpx fur asynchrone Operationen und fuhrt zwei parallele Aufgaben aus: Einen API-
Aufruf alle 3 Sekunden und einen Timer, der jede Sekunde hochzahit.

Komponenten-Erklarung

1. Callback-Funktion api_response_callback:
o Diese Funktion wird als Callback verwendet und gibt die Daten aus, die von der API
empfangen wurden.
o Es nimmt die response _data als Argument und gibt sie direkt in der Konsole aus.
2. Asynchrone Funktion fetch_data_ from_api:
o Diese Funktion ruft alle 3 Sekunden asynchron eine API auf.
o Sie verwendet den httpx.AsyncClient, um eine asynchrone HTTP-Anfrage zu senden.
o Nach Erhalt der Antwort von der API wird der bereitgestellte Callback mit den Daten
aufgerufen.
o Die Funktion pausiert dann fur 3 Sekunden, bevor sie erneut eine Anfrage an die API
sendet.
3. Asynchrone Funktion async_timer:
o Diese Funktion fungiert als asynchroner Timer.
o Sie verwendet asyncio.sleep fur die Verzégerung von einer Sekunde.
o In jeder Iteration ihrer Schleife gibt sie einen Zahler aus und erhoht ihn dann um eins.
4. Asynchrone Funktion main:
o Dies ist die Hauptfunktion, die beide oben genannten asynchronen Funktionen parallel
ausfuhrt.
o Sie verwendet asyncio.create task, um sowohl den API-Aufruf als auch den Timer als
separate, gleichzeitig laufende Aufgaben zu starten.
o Sie wartet dann darauf, dass beide Aufgaben abgeschlossen sind.
5. Programmeinstiegspunkt if name == 'main"
o Dies ist der Einstiegspunkt des Programms.
o Er ruft die main-Funktion mit asyncio. run auf, was den Beginn der asynchronen
Ausfuhrung markiert.

Zusammenfassung

Das Programm demonstriert, wie man asynchrone Operationen in Python effizient handhabt. Es zeigt,
wie man gleichzeitig einen asynchronen API-Aufruf und einen asynchronen Timer ausfuhrt, ohne dass
der eine den anderen blockiert. Das Ergebnis ist eine nahtlose Ausfihrung beider Aufgaben, wobei
der Timer jede Sekunde hochzahlt und alle 3 Sekunden eine API-Antwort ausgegeben wird.

asyncio
httpx

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: - T . . .
2024/03/28 14:07 modul:m323:learningunits:lu03:loesungen:timer https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/timer

det api_response callback(response data):

Callback-Funktion, die aufgerufen wird, nachdem die API-Antwort
empfangen wurde.

Args:
- response data: Die Daten, die von der API empfangen wurden.

Returns:
- None, da die Daten direkt in der Konsole ausgegeben werden.

print(f"API Response: {response data}"

async def fetch data from api(callback):

Diese Funktion ruft asynchron alle 3 Sekunden eine API
("https://hub.dummyapis.com/delay?seconds=3"') auf, die eine

Verzogerung von 3 Sekunden simuliert. Nachdem die Daten von der API
abgerufen wurden, wird der bereitgestellte

Callback mit den Daten aufgerufen.

Args:
- callback: Die Callback-Funktion, die aufgerufen wird, nachdem die API-
Daten empfangen wurden.

Returns:
- None, da die Daten an die Callback-Funktion weitergegeben werden.

while True:
async with httpx.AsyncClient() as client:
response = await
client.get('https://hub.dummyapis.com/delay?seconds=3"
callback(response
await asyncio.sleep(3

async def async_timer

Diese Funktion fungiert als asynchroner Timer, der jede Sekunde
hochzahlt und den aktuellen Wert ausgibt.

Sie verwendet “asyncio.sleep” fiir die Verzdgerung und fiihrt eine endlose
Schleife aus, die den Zahler jede Sekunde erhdht.

Returns:
- None, da der Zahlerstand direkt in der Konsole ausgegeben wird.

https://wiki.bzz.ch/ Printed on 2026/02/03 19:24

2026/02/03 19:24 3/3 LU03.L10 - Timer und API-Call

count
True:
count
count +

await asyncio.sleep

async main

Hauptfunktion, die beide asynchrone Funktionen, "“fetch data from api’
und “async timer , parallel ausfihrt.

Sie verwendet "asyncio.create task’ um die beiden Funktionen als
separate, gleichzeitig laufende Tasks zu starten.

Returns:
- None, da alle Ausgaben direkt in den jeweiligen Funktionen erfolgen.

api task
asyncio.create task(fetch data from api(api response callback
timer task = asyncio.create task(async timer

await api_task

await timer task

__nhame ' main_ ':
asyncio.run(main

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/timer

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/loesungen/timer

	LU03.L10 - Timer und API-Call
	Einführung
	Komponenten-Erklärung
	Zusammenfassung

