
2025/11/20 05:49 1/4 LU03c - Rekursives Problem lösen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU03c - Rekursives Problem lösen

Video Basics: https://www.youtube.com/watch?v=ngCos392W4w
Towers of Hanoi: https://www.youtube.com/watch?v=rf6uf3jNjbo

Basisfall und rekursiver Fall

Jede rekursive Funktion besteht aus zwei Hauptteilen:

Basisfall: Der Basisfall ist der Teil der Funktion, der ein einfaches Problem direkt löst. Der Basisfall
wird verwendet, um die Rekursion zu beenden. Ohne einen Basisfall würde die Rekursion endlos
fortgesetzt.

Rekursiver Fall: Der rekursive Fall ist der Teil der Funktion, der das Problem in kleinere Teilprobleme
unterteilt und sich selbst darauf aufruft.

Schritt-für-Schritt-Anleitung zur Erstellung einer rekursiven
Funktion

Einfachster Input (Base Case): Das ist das Fundament einer jeden rekursiven Funktion.1.
Bevor man versucht, die allgemeine Lösung eines Problems zu finden, muss man den
einfachsten Fall oder die „Basis“ definieren, auf der die Rekursion endet. Der Base Case
verhindert, dass die Rekursion unendlich wird.
Herumspielen und Visualisieren: Man experimentiert mit einigen Beispielen des Problems,2.
um ein Verständnis dafür zu entwickeln, wie man es lösen kann. Zeichnungen oder Diagramme
können dabei helfen, die Struktur des Problems zu erkennen.
Schwierige Fälle mit Einfachen Vergleichen : Hier versucht man, die komplexeren Fälle in3.
Beziehung zu den einfacheren zu setzen. Man fragt sich, wie man ein größeres Problem in
kleinere Teile zerlegen kann, die sich auf die einfacheren Fälle beziehen.
Muster Generalisieren: Nachdem man eine Beziehung zwischen den schwierigen und den4.
einfachen Fällen gefunden hat, versucht man, eine allgemeine Lösung zu finden, die auf alle
Fälle zutrifft. Das könnte eine Formel oder ein Algorithmus sein.
Muster mit Base Case Kombinieren: Schließlich kombiniert man die allgemeine Lösung mit5.
dem Base Case, um die endgültige rekursive Funktion zu formulieren.

Beispiel: Berechnung der Fakultät

Problemstellung: Wir möchten die Fakultät einer nicht-negativen Ganzzahl n berechnen, d.h. das
Produkt aller Ganzzahlen von 1 bis n.

1. Einfachster Input (Base Case)

Was ist der einfachste Fall? Die Fakultät von 0 ist 1 (definiert als 0!=1). Rekursive Regel: Wenn n=0,

https://www.youtube.com/watch?v=ngCos392W4w
https://www.youtube.com/watch?v=rf6uf3jNjbo

Last update: 2024/03/28 14:07 modul:m323:learningunits:lu03:rekursion2 https://wiki.bzz.ch/modul/m323/learningunits/lu03/rekursion2

https://wiki.bzz.ch/ Printed on 2025/11/20 05:49

dann ist das Ergebnis 1.

2. Herumspielen und Visualisieren

Spielen Sie mit Beispielen herum: Nehmen Sie ein paar Zahlen und berechnen Sie die Fakultät
manuell, z.B. 3!=3×2×1×1=6. Visualisieren: Sie können erkennen, dass die Fakultät von n das
Produkt von n und der Fakultät von n−1 ist.

3. Schwierige Fälle mit Einfachen Vergleichen

Da Sie beim Herumspielen gemerkt haben, dass die Fakultät von n das Produkt von n und der
Fakultät von n−1 ist. Haben Sie gemerkt, dass die Fakultät von n als n×(n−1)! ausgedrückt werden
kann.

4. Muster Generalisieren

Allgemeine Formel finden: Die rekursive Formel ist also: n!=n×(n−1)!.

5. Muster mit Base Case Kombinieren

Kombinieren der Formel mit dem Base Case: Die endgültige rekursive Funktion kombiniert die
allgemeine Formel mit dem Base Case.

Hier ist der Python-Code, der diese Schritte umsetzt:

def factorial(n):
 if n == 0: # Base Case
 return 1
 else:
 return n * factorial(n - 1) # Rekursiver Fall

Beispiel: Erstellung aller möglichen Kombinationen eines
Strings

Problemstellung: Wir möchten alle möglichen Permutationen eines gegebenen Strings finden.

1. Einfachster Input (Base Case)

Was ist der einfachste Fall? Ein String mit einer Länge von 1 hat nur eine Permutation, nämlich sich
selbst.

Rekursive Regel: Wenn die Länge des Strings gleich 1 ist, geben Sie eine Liste mit dem String selbst

2025/11/20 05:49 3/4 LU03c - Rekursives Problem lösen

BZZ - Modulwiki - https://wiki.bzz.ch/

zurück.

2. Herumspielen und Visualisieren

Spielen Sie mit Beispielen herum: Nehmen Sie einen String wie AB und finden Sie alle möglichen
Kombinationen (AB, BA).

Visualisieren: Sie können erkennen, dass die Permutation eines Strings die Verbindung eines jeden
Zeichens mit der Permutation des Restes des Strings ist.

3. Schwierige Fälle mit Einfachen Vergleichen

Relation zwischen schwierigen und einfachen Fällen: Die Permutationen eines Strings können
gefunden werden, indem jedes Zeichen im String als Startzeichen genommen und mit den
Permutationen des restlichen Strings verbunden wird.

4. Muster Generalisieren

Allgemeine Formel finden: Die rekursive Formel besteht darin, jedes Zeichen des Strings als
Startpunkt zu nehmen und mit den Permutationen des Rests des Strings zu kombinieren.

5. Muster mit Base Case Kombinieren

Kombinieren der Formel mit dem Base Case: Die endgültige rekursive Funktion kombiniert die
allgemeine Formel mit dem Base Case. Hier ist der Python-Code, der diese Schritte umsetzt:

def permutations(s):
 if len(s) == 1: # Base Case
 return [s]
 perm_list = [] # Liste, um die Permutationen zu speichern
 for char in s:
 remaining_chars = s.replace(char, '', 1)
 remaining_permutations = permutations(remaining_chars) # Rekursiver
Aufruf
 for perm in remaining_permutations:
 perm_list.append(char + perm)
 return perm_list

M323-LU03

 © Kevin Maurizi

https://wiki.bzz.ch/tag/m323-lu03?do=showtag&tag=M323-LU03
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/

Last update: 2024/03/28 14:07 modul:m323:learningunits:lu03:rekursion2 https://wiki.bzz.ch/modul/m323/learningunits/lu03/rekursion2

https://wiki.bzz.ch/ Printed on 2025/11/20 05:49

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu03/rekursion2

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu03/rekursion2

	LU03c - Rekursives Problem lösen
	Basisfall und rekursiver Fall
	Schritt-für-Schritt-Anleitung zur Erstellung einer rekursiven Funktion
	Beispiel: Berechnung der Fakultät
	1. Einfachster Input (Base Case)
	2. Herumspielen und Visualisieren
	3. Schwierige Fälle mit Einfachen Vergleichen
	4. Muster Generalisieren
	5. Muster mit Base Case Kombinieren

	Beispiel: Erstellung aller möglichen Kombinationen eines Strings
	1. Einfachster Input (Base Case)
	2. Herumspielen und Visualisieren
	3. Schwierige Fälle mit Einfachen Vergleichen
	4. Muster Generalisieren
	5. Muster mit Base Case Kombinieren

