2026/02/03 09:06 1/3 LUO4; - Filtern, womit?

LUO4j - Filtern, womit?

Das Filtern von Daten ist eine haufige Aufgabe in der Programmierung. In Python gibt es verschiedene
Madglichkeiten, Listen zu filtern: filter(), List Comprehensions und Generator Expressions. Jede
Methode hat ihre eigenen Vorteile und Anwendungsfalle.

Generator Expressions

Generator Expressions sind ,lazy“, d.h. sie generieren Werte ,on-the-fly“ und halten nicht die
gesamte Sequenz im Speicher. Dies macht sie besonders effizient fir groBe Datenmengen.

Vorteile:

1. Speichereffizienz: Da sie ,lazy” sind, verbrauchen sie weniger Speicher.

2. Flexibilitat: Sie kdnnen wie List Comprehensions verwendet werden, aber ohne den Overhead,
die gesamte Liste im Speicher zu halten.

3. Integration mit anderen Funktionen: Sie kdnnen leicht mit Funktionen wie “next()
kombiniert werden, um das nachste gefilterte Element zu erhalten.

Nachteile:

1. Einmalige Verwendung: Einmal durchlaufen, muss ein Generator erneut erstellt werden, um
wieder durchlaufen zu werden.

filter()

Die filter()-Funktion ist eine eingebaute Funktion, die es ermdglicht, Elemente einer Liste
basierend auf einer Funktion zu filtern.

Vorteile:

1. Lesbarkeit: Es ist explizit und zeigt klar die Absicht, eine Liste zu filtern.
2. Einfachheit: Fir einfache Filterungen kann es weniger Code erfordern als eine List
Comprehension oder Generator Expression.

Nachteile:

1. Ruckgabetyp: filter () gibt einen Iterator zurick, sodass Sie ihn in eine Liste umwandeln
mussen, wenn Sie eine Liste als Ergebnis mdchten.

2. Flexibilitat: Es kann weniger flexibel sein als List Comprehensions oder Generator Expressions,
da es nur zum Filtern und nicht zum Transformieren von Daten verwendet wird.

List Comprehensions

List Comprehensions bieten eine kompakte Maglichkeit, Listen zu erstellen und zu filtern.

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update: 2024/03/28 14:07 modul:m323:learningunits:lu04:filtering https://wiki.bzz.ch/modul/m323/learningunits/lu04/filtering

Vorteile:

1. Lesbarkeit: Sie sind oft leichter zu lesen und zu verstehen als die “filter() -Funktion,
insbesondere wenn Transformationen erforderlich sind.

2. Flexibilitat: Sie kdnnen sowohl zum Filtern als auch zum Transformieren von Daten verwendet
werden.

Nachteile:

1. Speicherverbrauch: Im Gegensatz zu Generator Expressions halten sie die gesamte Liste im
Speicher, was bei groBen Datenmengen problematisch sein kann.

Wahl der Filtermethode

Die Wahl der Filtermethode hangt stark von der spezifischen Anwendung und den Anforderungen ab.
Hier sind einige Uberlegungen, die Ihnen helfen kénnen, die beste Methode fiir verschiedene
erwartete Ergebnisse zu bestimmen:

1. Einzelnes Element: Wenn Sie nur ein einzelnes Element aus einer Sequenz basierend auf
einem Kriterium extrahieren méchten, sind Generator Expressions in Kombination mit
next () oft die beste Wahl. Sie sind ,lazy” und generieren Werte on-the-fly, sodass Sie nicht die
gesamte Sequenz durchlaufen mussen, um das gewtnschte Element zu finden.

2. Komplette Liste: Wenn Sie eine vollstandige Liste der gefilterten Ergebnisse bendétigen:

o Bei kleineren Datenmengen sind List Comprehensions oft die bevorzugte Methode,
da sie sowohl lesbar als auch flexibel sind.

o Bei groReren Datenmengen kdnnen Generator Expressions vorteilhaft sein,
insbesondere wenn Sie nicht alle Ergebnisse gleichzeitig bendtigen. Sie kénnen durch den
Generator iterieren und die Ergebnisse nach Bedarf verarbeiten, ohne den gesamten
Datensatz im Speicher zu halten.

3. Einfaches Filtern ohne Transformation: Wenn Sie nur filtern und keine Transformation der
Daten durchfuhren mdchten, kann die filter ()-Funktion eine gute Wahl sein. Sie ist explizit
und zeigt klar die Absicht, eine Sequenz zu filtern. Beachten Sie jedoch, dass filter() einen
Iterator zurlickgibt, sodass Sie ihn in eine Liste umwandeln mussen, wenn Sie eine Liste als
Ergebnis mochten.

4. Speichereffizienz: Wenn der Speicherverbrauch ein Hauptanliegen ist (z.B. bei sehr groen
Datenmengen), sind Generator Expressions oft die beste Wahl, da sie die Daten nicht im
Speicher halten.

5. Lesbarkeit und Wartbarkeit: In vielen Fallen kann die Wahl auch von der Lesbarkeit und
Wartbarkeit des Codes abhangen. List Comprehensions sind oft leichter zu lesen und zu
verstehen als die filter()-Funktion, insbesondere wenn auch Datenverarbeitung erforderlich
ist.

Fazit

Wahrend alle drei Methoden ihre eigenen Vorteile haben, eignen sich Generator Expressions
besonders gut zum Filtern grolBer Datenmengen aufgrund ihrer Speichereffizienz. Wenn Sie jedoch
eine Liste als Ergebnis benoétigen und die Datenmenge nicht zu grol§ ist, konnen List Comprehensions
eine gute Wahl sein. Fir einfache Filterungen, bei denen keine Transformation erforderlich ist, kann

https://wiki.bzz.ch/ Printed on 2026/02/03 09:06



2026/02/03 09:06 3/3 LUO4; - Filtern, womit?

die filter()-Funktion ausreichend sein.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu04/filtering

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu04/filtering

	LU04j - Filtern, womit?
	Generator Expressions
	filter()
	List Comprehensions
	Wahl der Filtermethode
	Fazit


