2026/02/03 14:01 1/4 LUO4h - Generatoren

LUO4h - Generatoren

Generatoren sind eine einfache Mdglichkeit, Iteratoren in Python zu erstellen. Sie ermoglichen es,

durch eine Sequenz von Werten zu iterieren, ohne die gesamte Sequenz im Speicher zu speichern.
Dies wird durch die Verwendung des Schlisselworts yield anstelle von return in einer Funktion
erreicht.

Was sind Generatoren?

Ein Generator ist ein spezieller Typ von Iterator, der mit einer Funktion und dem Schlisselwort yield
erstellt wird. Im Gegensatz zu normalen Funktionen, die einen Wert zurtickgeben und dann beendet
werden, ,pausieren” Generatoren ihren Zustand und setzen die Ausfuhrung fort, wenn der nachste
Wert benétigt wird.

Wichtige Eigenschaften

e Lazy: Werte werden erst erzeugt, wenn sie gebraucht werden (z.B. im for-Loop oder mit
next()).

e Einmal konsumierbar: Ein Generator lauft von vorne nach hinten durch. Was ,verbraucht” ist,
ist weg.

e Zustand bleibt erhalten: Lokale Variablen behalten ihren Wert zwischen zwei yield-
Schritten.

Syntax

Die Erstellung eines Generators ist ahnlich wie die einer normalen Funktion, aber anstelle des
return-Schlisselworts verwenden wir yield:

my generator

Generator vs. normale Funktion

Eine normale Funktion liefert genau einen Ruckgabewert und endet. Ein Generator liefert mehrere
Werte nacheinander:

normal function

wird nie erreicht

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2025/12/18 21:21 modul:m323:learningunits:lu04:generatoren https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatoren

generator_ function

wird erreicht, wenn weiter iteriert wird

normal function # 1
gen generator function

next(gen # 1

next(gen # 2
Beispiele

Einfacher Generator

Ein einfacher Generator, der die Zahlen 1 bis 3 zurtckgibt:

simple generator

gen simple generator
next(gen # 1
next(gen # 2
next(gen # 3

Generator mit Schleife

Ein Generator, der die Quadrate der Zahlen von 1 bis n zurtckgibt:

square_numbers(n
i range n +
i*xi

square square_numbers
next(square # 1
next(square)) # 4

next(square)) # 9
next(square # 16
next(square # 25

Generator Expression

Generator Expressions sind eine kompaktere Art, Generatoren zu erstellen, ahnlich wie List
Comprehensions:

squared X * X X range

https://wiki.bzz.ch/ Printed on 2026/02/03 14:01

2026/02/03 14:01 3/4 LUO4h - Generatoren

next (squared # 0
next(squared # 1

Typische Verwendung: for-Loop statt next()

In der Praxis nutzt man Generatoren meistens im for-Loop, weil der Loop automatisch stoppt, wenn
der Generator fertig ist:

countdown(n):

n :
n
n =
value countdown
value
utput

Stoplteration: Was passiert, wenn der Generator fertig ist?
Wenn ein Generator keine Werte mehr liefern kann, endet er. Bei next () fuhrt das zu einer
Exception StopIteration:
gen X X range

next(gen # 0

next(gen # 1
nachster Aufruf -> StopIteration

print(next(gen))

Generatoren sind Iteratoren

Ein Generator ist selbst ein Iterator: iter(gen) gibt den Generator zurick, und next(gen) liefert
den nachsten Wert.

gen X X range
iter(gen gen) # True

Vorteile von Generatoren

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2025/12/18 21:21 modul:m323:learningunits:lu04:generatoren https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatoren

e Speichereffizienz: Generatoren speichern nicht alle Werte im Speicher, sondern generieren
sie ,on-the-fly“. Dies ist besonders nutzlich, wenn mit grolen Datenmengen gearbeitet wird.

¢ Einfachheit: Generatoren sind einfacher zu implementieren als benutzerdefinierte Iteratoren.

 Vielseitigkeit: Generatoren konnen fur jede Art von Datenquelle verwendet werden, nicht nur
fur Listen oder Sequenzen.

e Abbruch méglich: Man kann friih aufhoéren zu iterieren (z.B. nach dem ersten Treffer). Der
Rest wird gar nie berechnet.

Verstandnis des "yield''-Schlusselworts

Das Schlusselwort yield in Python wird verwendet, um einen Wert aus einer Funktion zurtickzugeben
und den aktuellen Zustand der Funktion zu speichern. Wenn die Funktion das nachste Mal weiter

iteriert wird, wird sie von der Stelle fortgesetzt, an der sie zuletzt angehalten wurde, und nicht von
Anfang an.

Mini-Zusammenfassung

Begriff Bedeutung

yield Liefert einen Wert und pausiert die Funktion (Zustand bleibt erhalten).
Generator Iterator, der Werte ,lazy” erzeugt.

next(gen) Liefert den nachsten Wert (oder StopIteration, wenn fertig).
Generator Expression|Kurzform: (expression for item in iterable if condition)

M323-LU04

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatoren

Last update: 2025/12/18 21:21

https://wiki.bzz.ch/ Printed on 2026/02/03 14:01

https://wiki.bzz.ch/tag/m323-lu04?do=showtag&tag=M323-LU04
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatoren

	LU04h - Generatoren
	Was sind Generatoren?
	Wichtige Eigenschaften
	Syntax
	Generator vs. normale Funktion
	Beispiele
	Einfacher Generator
	Generator mit Schleife
	Generator Expression

	Typische Verwendung: for-Loop statt next()
	StopIteration: Was passiert, wenn der Generator fertig ist?
	Generatoren sind Iteratoren
	Vorteile von Generatoren
	Verständnis des ''yield''-Schlüsselworts
	Mini-Zusammenfassung

