
2026/02/03 14:01 1/4 LU04h - Generatoren

BZZ - Modulwiki - https://wiki.bzz.ch/

LU04h - Generatoren

Generatoren sind eine einfache Möglichkeit, Iteratoren in Python zu erstellen. Sie ermöglichen es,
durch eine Sequenz von Werten zu iterieren, ohne die gesamte Sequenz im Speicher zu speichern.
Dies wird durch die Verwendung des Schlüsselworts yield anstelle von return in einer Funktion
erreicht.

Was sind Generatoren?

Ein Generator ist ein spezieller Typ von Iterator, der mit einer Funktion und dem Schlüsselwort yield
erstellt wird. Im Gegensatz zu normalen Funktionen, die einen Wert zurückgeben und dann beendet
werden, „pausieren“ Generatoren ihren Zustand und setzen die Ausführung fort, wenn der nächste
Wert benötigt wird.

Wichtige Eigenschaften

Lazy: Werte werden erst erzeugt, wenn sie gebraucht werden (z.B. im for-Loop oder mit
next()).
Einmal konsumierbar: Ein Generator läuft von vorne nach hinten durch. Was „verbraucht“ ist,
ist weg.
Zustand bleibt erhalten: Lokale Variablen behalten ihren Wert zwischen zwei yield-
Schritten.

Syntax

Die Erstellung eines Generators ist ähnlich wie die einer normalen Funktion, aber anstelle des
return-Schlüsselworts verwenden wir yield:

def my_generator():
 yield 1
 yield 2
 yield 3

Generator vs. normale Funktion

Eine normale Funktion liefert genau einen Rückgabewert und endet. Ein Generator liefert mehrere
Werte nacheinander:

def normal_function():
 return 1
 return 2 # wird nie erreicht

Last update: 2025/12/18 21:21 modul:m323:learningunits:lu04:generatoren https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatoren

https://wiki.bzz.ch/ Printed on 2026/02/03 14:01

def generator_function():
 yield 1
 yield 2 # wird erreicht, wenn weiter iteriert wird

print(normal_function()) # 1
gen = generator_function()
print(next(gen)) # 1
print(next(gen)) # 2

Beispiele

Einfacher Generator

Ein einfacher Generator, der die Zahlen 1 bis 3 zurückgibt:

def simple_generator():
 yield 1
 yield 2
 yield 3

gen = simple_generator()
print(next(gen)) # 1
print(next(gen)) # 2
print(next(gen)) # 3

Generator mit Schleife

Ein Generator, der die Quadrate der Zahlen von 1 bis n zurückgibt:

def square_numbers(n):
 for i in range(1, n + 1):
 yield i * i

square = square_numbers(5)
print(next(square)) # 1
print(next(square)) # 4
print(next(square)) # 9
print(next(square)) # 16
print(next(square)) # 25

Generator Expression

Generator Expressions sind eine kompaktere Art, Generatoren zu erstellen, ähnlich wie List
Comprehensions:

squared = (x * x for x in range(6))

2026/02/03 14:01 3/4 LU04h - Generatoren

BZZ - Modulwiki - https://wiki.bzz.ch/

print(next(squared)) # 0
print(next(squared)) # 1

Typische Verwendung: for-Loop statt next()

In der Praxis nutzt man Generatoren meistens im for-Loop, weil der Loop automatisch stoppt, wenn
der Generator fertig ist:

def countdown(n):
 while n > 0:
 yield n
 n -= 1

for value in countdown(3):
 print(value)

Output:
3
2
1

StopIteration: Was passiert, wenn der Generator fertig ist?

Wenn ein Generator keine Werte mehr liefern kann, endet er. Bei next() führt das zu einer
Exception StopIteration:

gen = (x for x in range(2))
print(next(gen)) # 0
print(next(gen)) # 1

nächster Aufruf -> StopIteration
print(next(gen))

Generatoren sind Iteratoren

Ein Generator ist selbst ein Iterator: iter(gen) gibt den Generator zurück, und next(gen) liefert
den nächsten Wert.

gen = (x for x in range(3))
print(iter(gen) is gen) # True

Vorteile von Generatoren

Last update: 2025/12/18 21:21 modul:m323:learningunits:lu04:generatoren https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatoren

https://wiki.bzz.ch/ Printed on 2026/02/03 14:01

Speichereffizienz: Generatoren speichern nicht alle Werte im Speicher, sondern generieren
sie „on-the-fly“. Dies ist besonders nützlich, wenn mit großen Datenmengen gearbeitet wird.
Einfachheit: Generatoren sind einfacher zu implementieren als benutzerdefinierte Iteratoren.
Vielseitigkeit: Generatoren können für jede Art von Datenquelle verwendet werden, nicht nur
für Listen oder Sequenzen.
Abbruch möglich: Man kann früh aufhören zu iterieren (z.B. nach dem ersten Treffer). Der
Rest wird gar nie berechnet.

Verständnis des ''yield''-Schlüsselworts

Das Schlüsselwort yield in Python wird verwendet, um einen Wert aus einer Funktion zurückzugeben
und den aktuellen Zustand der Funktion zu speichern. Wenn die Funktion das nächste Mal weiter
iteriert wird, wird sie von der Stelle fortgesetzt, an der sie zuletzt angehalten wurde, und nicht von
Anfang an.

Mini-Zusammenfassung
Begriff Bedeutung
yield Liefert einen Wert und pausiert die Funktion (Zustand bleibt erhalten).
Generator Iterator, der Werte „lazy“ erzeugt.
next(gen) Liefert den nächsten Wert (oder StopIteration, wenn fertig).
Generator Expression Kurzform: (expression for item in iterable if condition)

M323-LU04

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatoren

Last update: 2025/12/18 21:21

https://wiki.bzz.ch/tag/m323-lu04?do=showtag&tag=M323-LU04
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatoren

	LU04h - Generatoren
	Was sind Generatoren?
	Wichtige Eigenschaften
	Syntax
	Generator vs. normale Funktion
	Beispiele
	Einfacher Generator
	Generator mit Schleife
	Generator Expression

	Typische Verwendung: for-Loop statt next()
	StopIteration: Was passiert, wenn der Generator fertig ist?
	Generatoren sind Iteratoren
	Vorteile von Generatoren
	Verständnis des ''yield''-Schlüsselworts
	Mini-Zusammenfassung

