2025/12/23 05:13 1/4 LUO4i - Generator Expressions

LUO4i - Generator Expressions

Generator Expressions bieten eine kompakte Maglichkeit, Generatoren zu erstellen. Sie ahneln List
Comprehensions, verwenden jedoch runde Klammern () anstelle von eckigen Klammern []. Der
Hauptvorteil von Generator Expressions ist, dass sie ,lazy” sind, d.h. sie generieren Werte ,,on-the-fly
und halten nicht die gesamte Sequenz im Speicher.

u

Hauptverwendungszweck von Generator Expressions

Generator Expressions werden in Python vorwiegend zur ,lazy” Transformation von Daten verwendet.
Sie sind besonders nutzlich, wenn man eine bestehende Liste (oder ein anderes iterierbares Objekt)
nehmen und jedes ihrer Elemente auf eine bestimmte Weise transformieren mochte, ohne die
gesamte Sequenz im Speicher zu speichern.

Die Syntax

gen_expr expression item iterable condition True

Beispiel: "lazy" Verhalten sichtbar machen

Dieses Beispiel zeigt, dass eine Generator Expression Werte erst erzeugt, wenn sie wirklich gebraucht
werden (z.B. mit next ()) und dass ein Generator nach dem Konsumieren nicht automatisch ,,neu
startet”.

# Beispiel: Generator Expression ist "lazy" (Werte entstehen erst beim
Iterieren)

numbers
squares_gen s n numbers # Generator Expression
squares list n** n numbers] # List Comprehension (sofort fertig
berechnet)
squares_gen # <generator object ...>

squares list) # [1, 4, 9, 16, 25]

# Lazy sichtbar machen: Der Generator liefert Werte erst, wenn man ihn
“anzapft"

next(squares gen # 1
next(squares gen # 4
# Jetzt sind schon 2 Werte "verbraucht" — Ubrig bleiben nur noch die

restlichen:

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update:

2025/12/18 modul:m323:learningunits:lu04:generatorexpressions https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatorexpressions
13:26

list(squares gen # [9, 16, 25]

# Wichtig: Ein Generator kann danach nicht nochmals von vorne iteriert
werden:

list(squares gen # []
Punkt Was man sieht Merksatz
Lazy-Effekt ggjienk’i(squa res_gen) zeigt nur ein Generator- _Noch nichts berechnet.”
Verbrauch |next () holt Werte einzeln ~Werte entstehen beim Bedarf.”
Einmaligkeit/zweites list(squares gen) ist leer ,r,gseer;tegﬁ’lclc‘)ren kann man nicht
Teile einer Generator Expression
Condition
Ein optionaler Filter, um nur bestimmte Elemente einzuschlieRen.
gen_expr X X range( 10 X % 2 0
Die Bedingung if x % 2 == 0 liefert True fir alle geraden Zahlen, so dass der Generator alle

geraden Zahlen von 0 bis 9 enthalt.
Iterable

Das Iterable kann ein beliebiges iterierbares Objekt sein, z. B. eine Liste, ein Tupel, ein Set usw.
1. Beispiel mit einer Liste:
squared X**2 X 1, 2, 3, 4
# Ergebnis beim Iterieren: 1, 4, 9, 16
2. Beispiel mit einem Tupel:
doubled X * 2 X 1, 2, 3, 4
# Ergebnis beim Iterieren: 2, 4, 6, 8
3. Beispiel mit range():

gen_expr X X range (10
# Ergebnis beim Iterieren: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

https://wiki.bzz.ch/ Printed on 2025/12/23 05:13



2025/12/23 05:13 3/4 LUO4i - Generator Expressions

Expression

Der aktuelle Gegenstand der Iteration, aber auch das Ergebnis, das vor seinem Einzug in den neuen
Generator manipuliert werden kann.

1. Beispiel mathematische Operation:
#Expression = x * 2
doubled X * X range
# Ergebnis beim Iterieren: 0, 2, 4, 6, 8

2. Beispiel mit Funktionsaufruf:

words "apple", "banana", "cherry"
uppercased word.upper word words

Item

Das aktuelle Element, das in der Iteration verarbeitet wird. Der Name des Item wird im for-Konstrukt
definiert: for item in iterable

Beispiel

words ‘apple', 'banana', 'cherry'
uppercased item.upper item words
Beispiele

Filtern und Verwenden von next mit Generator Expressions

Angenommen, Sie haben eine Liste von Dictionarys, die verschiedene Benutzer darstellen, und jeder
Benutzer hat eine eindeutige ID. Sie méchten einen bestimmten Benutzer anhand seiner ID finden.

Beispiel-Daten:

users
"id': 'name': 'Alice'
"id': 'name': 'Bob'
"id': 'name': 'Charlie'’
'id': 'name': 'David’

Um den Benutzer mit der ID 3 zu finden, kdnnen Sie eine Generator Expression verwenden und
next () aufrufen, um das erste (und in diesem Fall einzige) Ergebnis zu erhalten:

user id to find

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update:
2025/12/18 modul:m323:learningunits:lu04:generatorexpressions https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatorexpressions

13:26

user = next/((user user users user/['id’ user _id to find), None
user # Output: {'id': 3, 'name': 'Charlie'}

In diesem Beispiel wird die Generator Expression (user for user in users if user['id']

== user id to find) verwendet, um durch die Liste der Benutzer zu iterieren und nur diejenigen
zurlickzugeben, deren ID der gesuchten ID entspricht. Die Funktion next () gibt dann den ersten
Benutzer zurlck, der die Bedingung erflllt. Wenn kein Benutzer gefunden wird, gibt next () den Wert
None zurick, da dies als Standardwert angegeben ist.

Dieser Ansatz ist besonders effizient, da er nicht die gesamte Liste durchlaufen muss, sondern bei der
ersten Ubereinstimmung stoppt.

Generator Expressions sind ein machtiges Werkzeug in
__ Python, das den Code sauberer und verstandlicher machen
6 kann. Sie ermdglichen die schnelle Transformation von
Daten und unterstutzen dabei, den Code naher an die
menschliche Logik und mathematische Notation zu bringen,
ohne den Speicher zu Uberlasten.

M323-LU04

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatorexpressions

Last update: 2025/12/18 13:26

https://wiki.bzz.ch/ Printed on 2025/12/23 05:13


https://wiki.bzz.ch/tag/m323-lu04?do=showtag&tag=M323-LU04
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatorexpressions

	LU04i - Generator Expressions
	Hauptverwendungszweck von Generator Expressions
	Die Syntax
	Beispiel: "lazy" Verhalten sichtbar machen
	Teile einer Generator Expression
	Condition
	Iterable
	Expression
	Item

	Beispiele
	Filtern und Verwenden von next mit Generator Expressions



