
2025/12/23 05:13 1/4 LU04i - Generator Expressions

BZZ - Modulwiki - https://wiki.bzz.ch/

LU04i - Generator Expressions

Generator Expressions bieten eine kompakte Möglichkeit, Generatoren zu erstellen. Sie ähneln List
Comprehensions, verwenden jedoch runde Klammern () anstelle von eckigen Klammern []. Der
Hauptvorteil von Generator Expressions ist, dass sie „lazy“ sind, d.h. sie generieren Werte „on-the-fly“
und halten nicht die gesamte Sequenz im Speicher.

Hauptverwendungszweck von Generator Expressions

Generator Expressions werden in Python vorwiegend zur „lazy“ Transformation von Daten verwendet.
Sie sind besonders nützlich, wenn man eine bestehende Liste (oder ein anderes iterierbares Objekt)
nehmen und jedes ihrer Elemente auf eine bestimmte Weise transformieren möchte, ohne die
gesamte Sequenz im Speicher zu speichern.

Die Syntax

gen_expr = (expression for item in iterable if condition == True)

Beispiel: "lazy" Verhalten sichtbar machen

Dieses Beispiel zeigt, dass eine Generator Expression Werte erst erzeugt, wenn sie wirklich gebraucht
werden (z.B. mit next()) und dass ein Generator nach dem Konsumieren nicht automatisch „neu
startet“.

Beispiel: Generator Expression ist "lazy" (Werte entstehen erst beim
Iterieren)

numbers = [1, 2, 3, 4, 5]

squares_gen = (n**2 for n in numbers) # Generator Expression
squares_list = [n**2 for n in numbers] # List Comprehension (sofort fertig
berechnet)

print(squares_gen) # <generator object ...>
print(squares_list) # [1, 4, 9, 16, 25]

Lazy sichtbar machen: Der Generator liefert Werte erst, wenn man ihn
"anzapft"
print(next(squares_gen)) # 1
print(next(squares_gen)) # 4

Jetzt sind schon 2 Werte "verbraucht" – übrig bleiben nur noch die
restlichen:

Last update:
2025/12/18
13:26

modul:m323:learningunits:lu04:generatorexpressions https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatorexpressions

https://wiki.bzz.ch/ Printed on 2025/12/23 05:13

print(list(squares_gen)) # [9, 16, 25]

Wichtig: Ein Generator kann danach nicht nochmals von vorne iteriert
werden:
print(list(squares_gen)) # []

Punkt Was man sieht Merksatz

Lazy-Effekt print(squares_gen) zeigt nur ein Generator-
Objekt „Noch nichts berechnet.“

Verbrauch next() holt Werte einzeln „Werte entstehen beim Bedarf.“

Einmaligkeit zweites list(squares_gen) ist leer „Generatoren kann man nicht
resetten.“

Teile einer Generator Expression

Condition

Ein optionaler Filter, um nur bestimmte Elemente einzuschließen.

gen_expr = (x for x in range(10) if x % 2 == 0)

Die Bedingung if x % 2 == 0 liefert True für alle geraden Zahlen, so dass der Generator alle
geraden Zahlen von 0 bis 9 enthält.

Iterable

Das Iterable kann ein beliebiges iterierbares Objekt sein, z. B. eine Liste, ein Tupel, ein Set usw.

Beispiel mit einer Liste:1.

 squared = (x**2 for x in [1, 2, 3, 4])
 # Ergebnis beim Iterieren: 1, 4, 9, 16

Beispiel mit einem Tupel:2.

 doubled = (x * 2 for x in (1, 2, 3, 4))
 # Ergebnis beim Iterieren: 2, 4, 6, 8

Beispiel mit range():3.

 gen_expr = (x for x in range(10))
 # Ergebnis beim Iterieren: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

2025/12/23 05:13 3/4 LU04i - Generator Expressions

BZZ - Modulwiki - https://wiki.bzz.ch/

Expression

Der aktuelle Gegenstand der Iteration, aber auch das Ergebnis, das vor seinem Einzug in den neuen
Generator manipuliert werden kann.

Beispiel mathematische Operation:1.

#Expression = x * 2
doubled = (x * 2 for x in range(5))
Ergebnis beim Iterieren: 0, 2, 4, 6, 8

Beispiel mit Funktionsaufruf:2.

words = ["apple", "banana", "cherry"]
uppercased = (word.upper() for word in words)

Item

Das aktuelle Element, das in der Iteration verarbeitet wird. Der Name des Item wird im for-Konstrukt
definiert: for item in iterable

Beispiel

words = ['apple', 'banana', 'cherry']
uppercased = (item.upper() for item in words)

Beispiele

Filtern und Verwenden von next mit Generator Expressions

Angenommen, Sie haben eine Liste von Dictionarys, die verschiedene Benutzer darstellen, und jeder
Benutzer hat eine eindeutige ID. Sie möchten einen bestimmten Benutzer anhand seiner ID finden.

Beispiel-Daten:

users = [
 {'id': 1, 'name': 'Alice'},
 {'id': 2, 'name': 'Bob'},
 {'id': 3, 'name': 'Charlie'},
 {'id': 4, 'name': 'David'}
]

Um den Benutzer mit der ID 3 zu finden, können Sie eine Generator Expression verwenden und
next() aufrufen, um das erste (und in diesem Fall einzige) Ergebnis zu erhalten:

user_id_to_find = 3

Last update:
2025/12/18
13:26

modul:m323:learningunits:lu04:generatorexpressions https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatorexpressions

https://wiki.bzz.ch/ Printed on 2025/12/23 05:13

user = next((user for user in users if user['id'] == user_id_to_find), None)
print(user) # Output: {'id': 3, 'name': 'Charlie'}

In diesem Beispiel wird die Generator Expression (user for user in users if user['id']
== user_id_to_find) verwendet, um durch die Liste der Benutzer zu iterieren und nur diejenigen
zurückzugeben, deren ID der gesuchten ID entspricht. Die Funktion next() gibt dann den ersten
Benutzer zurück, der die Bedingung erfüllt. Wenn kein Benutzer gefunden wird, gibt next() den Wert
None zurück, da dies als Standardwert angegeben ist.

Dieser Ansatz ist besonders effizient, da er nicht die gesamte Liste durchlaufen muss, sondern bei der
ersten Übereinstimmung stoppt.

Generator Expressions sind ein mächtiges Werkzeug in
Python, das den Code sauberer und verständlicher machen
kann. Sie ermöglichen die schnelle Transformation von
Daten und unterstützen dabei, den Code näher an die
menschliche Logik und mathematische Notation zu bringen,
ohne den Speicher zu überlasten.

M323-LU04

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatorexpressions

Last update: 2025/12/18 13:26

https://wiki.bzz.ch/tag/m323-lu04?do=showtag&tag=M323-LU04
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu04/generatorexpressions

	LU04i - Generator Expressions
	Hauptverwendungszweck von Generator Expressions
	Die Syntax
	Beispiel: "lazy" Verhalten sichtbar machen
	Teile einer Generator Expression
	Condition
	Iterable
	Expression
	Item

	Beispiele
	Filtern und Verwenden von next mit Generator Expressions

