2026/02/03 10:44 1/4 LUO4c - List Comprehensions

LUO4c - List Comprehensions

List Comprehensions sind eine kompakte Schreibweise, um aus vorhandenen Daten neue Listen zu
erzeugen. Man kann damit Elemente transformieren (z. B. quadrieren, in Grossbuchstaben
umwandeln) und optional filtern - in einer einzigen, gut lesbaren Zeile. Die Schreibweise erinnert an
mathematische Mengen-Schreibweise.

Hauptverwendungszweck von List Comprehensions

List Comprehensions werden in Python hauptsachlich flr zwei Dinge verwendet:

e Transformation: Jedes Element eines Iterables wird in eine neue Form gebracht (z. B. x =»
x**2 oder ,,audi“ - , AUDI")

* Filterung (optional): Es werden nur diejenigen Elemente Gbernommen, fur die eine
Bedingung erfullt ist.

Typisch ist eine Kombination aus beidem:

»Nimm alle Elemente aus einer bestehenden Datenquelle, filtere sie nach einer Bedingung und
wandle sie in eine neue Form um.”

Die Syntax

Die allgemeine Form einer List Comprehension ist:

newlist expression item iterable condition

e expression: Der Ausdruck, dessen Wert in die neue Liste aufgenommen wird (oft eine
Transformation von item).

¢ item: Der Name flr das aktuelle Element in der Schleife.

e iterable: Die Datenquelle, Uber die iteriert wird (z. B. Liste, Tupel, range, String, ...).

 condition (optional): Eine Bedingung, die True oder False ergibt. Nur wenn sie "True" ist,
wird expression in die neue Liste aufgenommen.

Ohne Filter-Bedingung sieht die einfachste Form so aus:
newlist expression item iterable
Das ist aquivalent zu:
newlist

item iterable:

optional: if condition:
newlist.append(expression

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update:

2025/12/11 13:50 modul:m323:learningunits:lu04:listcomprehensions https://wiki.bzz.ch/modul/m323/learningunits/lu04/listcomprehensions

Teile einer List Comprehension

Expression

Die Expression ist der Teil, der tatsachlich in der neuen Liste landet. Sie kann:

* einfach das aktuelle Element sein ("item")
e oder eine beliebige Berechnung / Funktionsanwendung auf “item".

1. Beispiel mathematische Operation:
Expression = x * 2
doubled X * X range
Ergebnis: [0, 2, 4, 6, 8]

1. Beispiel mit Funktionsaufruf:

cars ‘audi', 'bmw', ‘'subaru', 'toyota'
newlist car.upper car cars
newlist) # ['AUDI', 'BMW', 'SUBARU', 'TOYOTA']

Item

item ist der Name flir das aktuelle Element der Iteration. Er wird im for-Teil definiert: for item in
iterable.

1. Beispiel:
cars ‘audi', 'bmw', ‘'subaru', 'toyota'
newlist item.upper item cars
newlist

Hier ist item nacheinander 'audi’, 'bmw', 'subaru’, 'toyota'.

Iterable

Das Iterable kann ein beliebiges iterierbares Objekt sein, z. B. eine Liste, ein Tupel, ein Set, ein
String oder das Ergebnis von range().

1. Beispiel mit einer Liste:

squared X * X
Ergebnis: [1, 4, 9, 16]

https://wiki.bzz.ch/ Printed on 2026/02/03 10:44

2026/02/03 10:44 3/4 LUO4c - List Comprehensions

numbers
squared X** X numbers
Ergebnis: [1, 4, 9, 16]

1. Beispiel mit einem Tupel:
doubled X * X
Ergebnis: [2, 4, 6, 8]

1. Beispiel mit range():

newlist X X range
Ergebnis: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Condition
Die Condition ist ein optionaler Filter, der entscheidet, ob ein Element in die neue Liste
aufgenommen wird. Nur wenn die Bedingung True ergibt, wird expression ubernommen.

1. Beispiel mit Filter:

cars ‘audi’ VW 'seat', 'skoda', 'tesla'
newlist car car cars car 'tesla’
newlist = ['audi', 'vw', 'seat',6 'skoda']

Die Bedingung car != 'tesla' liefert True fur alle Elemente ausser 'tesla', daher enthalt die
neue Liste alle Autos ausser Tesla.

Die Bedingung ist optional und kann weggelassen werden:
1. Ohne Filter:

newlist X X cars
Kopie der urspringlichen Liste

Weitere Beispiele

1. Mit einem Iterable eines anderen Typs (String):

letters letter letter '"Hallo Welt'
#EfQEbnlS: [IHI, Iall Ill, Ill, IOI, 1 I, IWI, IeI’ Ill, Itl]

1. Nested List Comprehensions (verschachtelt):

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: o . T
2025/12/11 13:50 modul:m323:learningunits:lu04:listcomprehensions https://wiki.bzz.ch/modul/m323/learningunits/lu04/listcomprehensions

matrix
flattened num row matrix num row

Ergebnis: [1, 2, 3, 4, 5, 6, 7, 8, 9]

~ List Comprehensions sind ein machtiges Werkzeug in Python,
@ um vorhandene Daten in einer einzigen, klaren Zeile zu
transformieren und (falls nétig) zu filtern. Richtig
eingesetzt machen sie Code kirzer und oft besser lesbar.

M323-LU04

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu04/listcomprehensions

Last update: 2025/12/11 13:50

https://wiki.bzz.ch/ Printed on 2026/02/03 10:44

https://wiki.bzz.ch/tag/m323-lu04?do=showtag&tag=M323-LU04
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu04/listcomprehensions

	LU04c - List Comprehensions
	Hauptverwendungszweck von List Comprehensions
	Die Syntax
	Teile einer List Comprehension
	Expression
	Item
	Iterable
	Condition

	Weitere Beispiele

