
2026/02/03 10:44 1/4 LU04c - List Comprehensions

BZZ - Modulwiki - https://wiki.bzz.ch/

LU04c - List Comprehensions

List Comprehensions sind eine kompakte Schreibweise, um aus vorhandenen Daten neue Listen zu
erzeugen. Man kann damit Elemente transformieren (z. B. quadrieren, in Grossbuchstaben
umwandeln) und optional filtern – in einer einzigen, gut lesbaren Zeile. Die Schreibweise erinnert an
mathematische Mengen-Schreibweise.

Hauptverwendungszweck von List Comprehensions

List Comprehensions werden in Python hauptsächlich für zwei Dinge verwendet:

Transformation: Jedes Element eines Iterables wird in eine neue Form gebracht (z. B. x →
x**2 oder „audi“ → „AUDI“)
Filterung (optional): Es werden nur diejenigen Elemente übernommen, für die eine
Bedingung erfüllt ist.

Typisch ist eine Kombination aus beidem:

„Nimm alle Elemente aus einer bestehenden Datenquelle, filtere sie nach einer Bedingung und
wandle sie in eine neue Form um.“

Die Syntax

Die allgemeine Form einer List Comprehension ist:

newlist = [expression for item in iterable if condition]

expression: Der Ausdruck, dessen Wert in die neue Liste aufgenommen wird (oft eine
Transformation von item).
item: Der Name für das aktuelle Element in der Schleife.
iterable: Die Datenquelle, über die iteriert wird (z. B. Liste, Tupel, range, String, …).
condition (optional): Eine Bedingung, die True oder False ergibt. Nur wenn sie `True` ist,
wird expression in die neue Liste aufgenommen.

Ohne Filter-Bedingung sieht die einfachste Form so aus:

newlist = [expression for item in iterable]

Das ist äquivalent zu:

newlist = []
for item in iterable:
 # optional: if condition:
 newlist.append(expression)

Last update:
2025/12/11 13:50 modul:m323:learningunits:lu04:listcomprehensions https://wiki.bzz.ch/modul/m323/learningunits/lu04/listcomprehensions

https://wiki.bzz.ch/ Printed on 2026/02/03 10:44

Teile einer List Comprehension

Expression

Die Expression ist der Teil, der tatsächlich in der neuen Liste landet. Sie kann:

einfach das aktuelle Element sein (`item`)
oder eine beliebige Berechnung / Funktionsanwendung auf `item`.

Beispiel mathematische Operation:1.

Expression = x * 2
doubled = [x * 2 for x in range(5)]
Ergebnis: [0, 2, 4, 6, 8]

Beispiel mit Funktionsaufruf:1.

cars = ['audi', 'bmw', 'subaru', 'toyota']
newlist = [car.upper() for car in cars]
print(newlist) # ['AUDI', 'BMW', 'SUBARU', 'TOYOTA']

Item

item ist der Name für das aktuelle Element der Iteration. Er wird im for-Teil definiert: for item in
iterable.

Beispiel:1.

cars = ['audi', 'bmw', 'subaru', 'toyota']
newlist = [item.upper() for item in cars]
print(newlist)

Hier ist item nacheinander 'audi', 'bmw', 'subaru', 'toyota'.

Iterable

Das Iterable kann ein beliebiges iterierbares Objekt sein, z. B. eine Liste, ein Tupel, ein Set, ein
String oder das Ergebnis von range().

Beispiel mit einer Liste:1.

squared = [x**2 for x in [1, 2, 3, 4]]
Ergebnis: [1, 4, 9, 16]

2026/02/03 10:44 3/4 LU04c - List Comprehensions

BZZ - Modulwiki - https://wiki.bzz.ch/

numbers = [1, 2, 3, 4]
squared = [x**2 for x in numbers]
Ergebnis: [1, 4, 9, 16]

Beispiel mit einem Tupel:1.

doubled = [x * 2 for x in (1, 2, 3, 4)]
Ergebnis: [2, 4, 6, 8]

Beispiel mit range():1.

newlist = [x for x in range(10)]
Ergebnis: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Condition

Die Condition ist ein optionaler Filter, der entscheidet, ob ein Element in die neue Liste
aufgenommen wird. Nur wenn die Bedingung True ergibt, wird expression übernommen.

Beispiel mit Filter:1.

cars = ['audi', 'vw', 'seat', 'skoda', 'tesla']
newlist = [car for car in cars if car != 'tesla']
newlist = ['audi', 'vw', 'seat', 'skoda']

Die Bedingung car != 'tesla' liefert True für alle Elemente ausser 'tesla', daher enthält die
neue Liste alle Autos ausser Tesla.

Die Bedingung ist optional und kann weggelassen werden:

Ohne Filter:1.

newlist = [x for x in cars]
Kopie der ursprünglichen Liste

Weitere Beispiele

Mit einem Iterable eines anderen Typs (String):1.

letters = [letter for letter in 'Hallo Welt']
Ergebnis: ['H', 'a', 'l', 'l', 'o', ' ', 'W', 'e', 'l', 't']

Nested List Comprehensions (verschachtelt):1.

Last update:
2025/12/11 13:50 modul:m323:learningunits:lu04:listcomprehensions https://wiki.bzz.ch/modul/m323/learningunits/lu04/listcomprehensions

https://wiki.bzz.ch/ Printed on 2026/02/03 10:44

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flattened = [num for row in matrix for num in row]
Ergebnis: [1, 2, 3, 4, 5, 6, 7, 8, 9]

List Comprehensions sind ein mächtiges Werkzeug in Python,
um vorhandene Daten in einer einzigen, klaren Zeile zu
transformieren und (falls nötig) zu filtern. Richtig
eingesetzt machen sie Code kürzer und oft besser lesbar.

M323-LU04

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu04/listcomprehensions

Last update: 2025/12/11 13:50

https://wiki.bzz.ch/tag/m323-lu04?do=showtag&tag=M323-LU04
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu04/listcomprehensions

	LU04c - List Comprehensions
	Hauptverwendungszweck von List Comprehensions
	Die Syntax
	Teile einer List Comprehension
	Expression
	Item
	Iterable
	Condition

	Weitere Beispiele

