
2026/02/02 23:19 1/3 LU05e - Klassenbasierte Decorators in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

LU05e - Klassenbasierte Decorators in
Python

Klassenbasierte Decorators sind eine leistungsfähige Ergänzung zu den herkömmlichen,
funktionsbasierten Decorators in Python. Sie bieten mehr Flexibilität und können leichter
wiederverwendet und erweitert werden. In dieser Theorieseite werden wir die Grundlagen und
Anwendungsbeispiele für klassenbasierte Decorators besprechen.

Grundkonzepte

Ein klassenbasierter Decorator ist eine Klasse, die eine Methode namens __call__ implementiert.
Diese Methode wird aufgerufen, wenn der Decorator auf eine Funktion angewendet wird. Optional
kann die Klasse auch eine __init__-Methode implementieren, um die zu dekorierende Funktion als
Argument zu erhalten.

Syntax

Die grundlegende Syntax für einen klassenbasierten Decorator in Python ist die folgende:

class MyDecorator:
 def __init__(self, original_function):
 self.original_function = original_function

 def __call__(self, *args, **kwargs):
 print(f"Vor dem Aufruf von {self.original_function.__name__}")
 result = self.original_function(*args, **kwargs)
 print(f"Nach dem Aufruf von {self.original_function.__name__}")
 return result

@MyDecorator
def display():
 print("Die Display-Funktion wurde aufgerufen.")

In diesem Beispiel wird der Decorator MyDecorator auf die Funktion display angewendet. Der
„@“-Operator ist hier syntaktischer Zucker für display = MyDecorator(display).

Anwendungsbeispiele

Logging Decorator

Ein einfaches Beispiel für einen klassenbasierten Decorator könnte ein Logging-Decorator sein, der
Informationen vor und nach dem Aufruf einer Funktion ausgibt.

Last update: 2024/03/28
14:07 modul:m323:learningunits:lu05:classdecorator https://wiki.bzz.ch/modul/m323/learningunits/lu05/classdecorator

https://wiki.bzz.ch/ Printed on 2026/02/02 23:19

class LoggingDecorator:
 def __init__(self, original_function):
 self.original_function = original_function

 def __call__(self, *args, **kwargs):
 print(f"Logging vor dem Aufruf von
{self.original_function.__name__}")
 result = self.original_function(*args, **kwargs)
 print(f"Logging nach dem Aufruf von
{self.original_function.__name__}")
 return result

@LoggingDecorator
def add(a, b):
 return a + b

In diesem Beispiel gibt der LoggingDecorator Meldungen aus, bevor und nachdem die add-
Funktion aufgerufen wird.

Timing Decorator

Ein weiteres Beispiel könnte ein Timing-Decorator sein, der die Ausführungszeit einer Funktion misst.

import time

class TimingDecorator:
 def __init__(self, original_function):
 self.original_function = original_function

 def __call__(self, *args, **kwargs):
 start_time = time.time()
 result = self.original_function(*args, **kwargs)
 end_time = time.time()
 print(f"{self.original_function.__name__} ran in {end_time -
start_time} seconds")
 return result

@TimingDecorator
def calculate_factorial(num):
 factorial = 1
 for i in range(1, num + 1):
 factorial *= i
 return factorial

Hier misst der TimingDecorator die Ausführungszeit der calculate_factorial-Funktion und
gibt sie aus.

Diese Theorieseite sollte einen umfassenden Überblick über das Konzept der klassenbasierten
Decorators in Python bieten. Mit diesen Decorators können Sie komplexe und wiederverwendbare

2026/02/02 23:19 3/3 LU05e - Klassenbasierte Decorators in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

Funktionalitäten in Ihren Python-Anwendungen implementieren.

M323-LU05

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu05/classdecorator

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/tag/m323-lu05?do=showtag&tag=M323-LU05
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu05/classdecorator

	LU05e - Klassenbasierte Decorators in Python
	Grundkonzepte
	Syntax
	Anwendungsbeispiele
	Logging Decorator
	Timing Decorator

