2026/02/02 23:19 1/3 LUO5e - Klassenbasierte Decorators in Python

LUOSe - Klassenbasierte Decorators in
Python

Klassenbasierte Decorators sind eine leistungsfahige Erganzung zu den herkdmmlichen,
funktionsbasierten Decorators in Python. Sie bieten mehr Flexibilitat und konnen leichter
wiederverwendet und erweitert werden. In dieser Theorieseite werden wir die Grundlagen und
Anwendungsbeispiele fur klassenbasierte Decorators besprechen.

Grundkonzepte

Ein klassenbasierter Decorator ist eine Klasse, die eine Methode namens  call implementiert.
Diese Methode wird aufgerufen, wenn der Decorator auf eine Funktion angewendet wird. Optional
kann die Klasse auch eine _init -Methode implementieren, um die zu dekorierende Funktion als
Argument zu erhalten.

Syntax

Die grundlegende Syntax fur einen klassenbasierten Decorator in Python ist die folgende:

MyDecorator:
~init (self, original function):
self.original function = original function

~_call (self, *args, **kwargs
f"Vor dem Aufruf von {self.original function. name }"
result self.original function(*args, **kwargs
f"Nach dem Aufruf von {self.original function. name }"
result

MyDecorator
display
"Die Display-Funktion wurde aufgerufen."
In diesem Beispiel wird der Decorator MyDecorator auf die Funktion display angewendet. Der

,@"“-Operator ist hier syntaktischer Zucker fir display = MyDecorator(display).

Anwendungsbeispiele

Logging Decorator

Ein einfaches Beispiel fir einen klassenbasierten Decorator kénnte ein Logging-Decorator sein, der
Informationen vor und nach dem Aufruf einer Funktion ausgibt.

BZZ - Modulwiki - https://wiki.bzz.ch/



Last update: 2024/03/28

14:07 modul:m323:learningunits:lu05:classdecorator https://wiki.bzz.ch/modul/m323/learningunits/lu05/classdecorator

LoggingDecorator:
~init (self, original function
self.original function = original function

~_call (self, *args, **kwargs
f"Logging vor dem Aufruf von
{self.original function. name }"
result = self.original function(*args, **kwargs
f"Logging nach dem Aufruf von
{self.original function. name }"

result
LoggingDecorator
add(a, b
a+b

In diesem Beispiel gibt der LoggingDecorator Meldungen aus, bevor und nachdem die add-
Funktion aufgerufen wird.

Timing Decorator

Ein weiteres Beispiel kdnnte ein Timing-Decorator sein, der die Ausfuhrungszeit einer Funktion misst.
time

TimingDecorator:
~init (self, original function
self.original function = original function

~_call (self, *args, **kwargs
start _time = time.time
result self.original function(*args, **kwargs
end time = time.time
f"{self.original function. name } ran in {end time -
start time} seconds"
result

TimingDecorator
calculate factorial(num):
factorial
i range num +
factorial *= i
factorial

Hier misst der TimingDecorator die Ausfuhrungszeit der calculate factorial-Funktion und
gibt sie aus

Diese Theorieseite sollte einen umfassenden Uberblick Uber das Konzept der klassenbasierten
Decorators in Python bieten. Mit diesen Decorators konnen Sie komplexe und wiederverwendbare

https://wiki.bzz.ch/ Printed on 2026/02/02 23:19



2026/02/02 23:19 3/3 LUO5e - Klassenbasierte Decorators in Python

Funktionalitaten in Ihren Python-Anwendungen implementieren.

M323-LU05

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu05/classdecorator

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/tag/m323-lu05?do=showtag&tag=M323-LU05
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu05/classdecorator

	LU05e - Klassenbasierte Decorators in Python
	Grundkonzepte
	Syntax
	Anwendungsbeispiele
	Logging Decorator
	Timing Decorator



