2026/02/03 20:35 1/4

LUO5d - Decorators fur Funktionen in Python

LUO5d - Decorators fur Funktionen in Python

Ein Decorator in Python ist ein Entwurfsmuster, das es erlaubt, einer Funktion zusatzliche
Funktionalitat hinzuzufugen, ohne ihren Code zu andern. Decorators sind sehr leistungsfahig und
nutzlich, da sie den Code sauber halten und die Prinzipien der Wiederverwendbarkeit und Kapselung

fordern.

Grundkonzept

In Python sind Funktionen First-Class-Objekte, das bedeutet, sie kdnnen als Argumente an andere
Funktionen Ubergeben, von anderen Funktionen zuriickgegeben und in Variablen gespeichert werden.
Ein Decorator ist eine Funktion, die eine andere Funktion nimmt und diese erweitert, ohne ihren

Quellcode zu andern.

Syntax

Die grundlegende Syntax fur einen Decorator in Semantisch ist @decorator function genau

Python ist die folgende:

decorator function(original functio

nj:

wrapper_ function

zusatzliche
Funktionalitaten hier

original function

weitere zusatzliche
Funktionalitaten

wrapper_ function

decorator function
display
"Die Display-Funktion
wurde aufgerufen"

display

das gleiche wie eine Zuweisung direkt nach der
Funktionsdefinition.

decorator function(original functio
nj:

wrapper_ function

zusatzliche
Funktionalitaten hier

original function

weitere zusatzliche
Funktionalitaten

wrapper_ function

display
"Die Display-Funktion
wurde aufgerufen"

das macht @decorator function:
display

decorator function(display

display

In diesem Beispiel ist decorator function der Decorator, der die display-Funktion erweitert. Der
,@"“-Operator ist syntaktischer Zucker fur display = decorator function(display).

BZZ - Modulwiki - https://wiki.bzz.ch/

https://de.wikipedia.org/wiki/Syntaktischer_Zucker

Last update: 2025/12/17 13:28 modul:m323:learningunits:lu05:decorator https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator

Verwendung von Decorators

Decorators sind haufig in Web-Frameworks und bei der Entwicklung von APIs zu finden. Einige
gangige Anwendungsfalle flr Decorators sind:

Logging

Berechtigungsprufung

Caching

Uberwachung

 Anderung der Argumente oder des Rickgabewerts einer Funktion

Decorators fur Funktionen mit Parametern

Ein Decorator kann auch Argumente akzeptieren und Ruckgabewerte modifizieren. Dazu kénnen die
*args und **kwargs Syntax verwendet werden:

decorator function(original function
wrapper function(*args, **kwargs
f"Wrapper executed this before {original function. name }
original function(*args, **kwargs
wrapper_ function

In diesem erweiterten Beispiel kann der wrapper_ function jegliche Anzahl von Positional- und
Keyword-Argumenten akzeptieren und an die original function weitergeben.

Beispiel:
time

Decorator zum Messen der Ausfuhrungszeit
time it(original function

wrapper function(*args, **kwargs

start _time = time.time

result = original function(*args, **kwargs

end time = time.time

f"{original function. name } ran in {end time -
start time:.10f} seconds"
result
wrapper_ function

Beispiel-Funktion, die den Decorator verwendet

time it
calculate factorial(num):
factorial
i range num +
factorial *= i

factorial

https://wiki.bzz.ch/ Printed on 2026/02/03 20:35

2026/02/03 20:35 3/4 LUO5d - Decorators fur Funktionen in Python

Decorators mit eigenen Parametern

Decorators kdnnen auch Parameter akzeptieren, um ihre Funktionalitat weiter anzupassen. Diese
Parameter kdnnen verwendet werden, um das Verhalten des Decorators basierend auf den
Ubergebenen Werten zu steuern. In diesem Abschnitt werden wir uns ansehen, wie man
funktionsbasierte Decorators mit Parametern erstellt. Ein Decorator mit Parametern ist im Grunde
eine Funktion, die einen Decorator zurlickgibt. Diese aulBere Funktion akzeptiert die Parameter und
gibt den eigentlichen Decorator (eine innere Funktion) zurlck, der die zu dekorierende Funktion
modifiziert.

Syntax

Die grundlegende Syntax fur einen Decorator mit Parametern in Python ist die folgende:

outer function(parameter):
decorator function(original function
wrapper function(*args, **kwargs
f"Decorator Parameter: {parameter}"
original function(*args, **kwargs
wrapper_ function
decorator function

outer function("Hello, World!"
display
"Die Display-Funktion wurde aufgerufen."

In diesem Beispiel akzeptiert der auBere Decorator outer function einen Parameter und gibt den
eigentlichen Decorator decorator function zuruck. Der ,@“-Operator ist hier syntaktischer
Zucker fir display = outer function(,Hello, World!“) (display).

Anwendungsbeispiele
Logging Decorator mit Level

Ein praktisches Beispiel konnte ein Logging-Decorator mit einem Log-Level als Parameter sein.

logging decorator(level
decorator function(original function
wrapper_ function(*args, **kwargs
f"[{level}] Vor dem Aufruf von
{original function. name_ }"
result = original function(*args, **kwargs
f"[{level}] Nach dem Aufruf von
{original function. name }"
result
wrapper_ function

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2025/12/17 13:28 modul:m323:learningunits:lu05:decorator https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator

decorator function

logging decorator("INFO"
add(a, b):
a+b

In diesem Beispiel wird der Logging decorator mit einem Log-Level als Parameter aufgerufen. Der
Decorator gibt dann Log-Nachrichten mit dem entsprechenden Level aus.

M323-LU05

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator

Last update: 2025/12/17 13:28

https://wiki.bzz.ch/ Printed on 2026/02/03 20:35

https://wiki.bzz.ch/tag/m323-lu05?do=showtag&tag=M323-LU05
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator

	LU05d - Decorators für Funktionen in Python
	Grundkonzept
	Syntax
	Verwendung von Decorators

	Decorators für Funktionen mit Parametern
	Decorators mit eigenen Parametern
	Syntax
	Anwendungsbeispiele
	Logging Decorator mit Level

