
2026/02/06 18:14 1/4 LU05d - Decorators für Funktionen in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

LU05d - Decorators für Funktionen in Python

Ein Decorator in Python ist ein Entwurfsmuster, das es erlaubt, einer Funktion zusätzliche
Funktionalität hinzuzufügen, ohne ihren Code zu ändern. Decorators sind sehr leistungsfähig und
nützlich, da sie den Code sauber halten und die Prinzipien der Wiederverwendbarkeit und Kapselung
fördern.

Grundkonzept

In Python sind Funktionen First-Class-Objekte, das bedeutet, sie können als Argumente an andere
Funktionen übergeben, von anderen Funktionen zurückgegeben und in Variablen gespeichert werden.
Ein Decorator ist eine Funktion, die eine andere Funktion nimmt und diese erweitert, ohne ihren
Quellcode zu ändern.

Syntax

Die grundlegende Syntax für einen Decorator in Python ist die folgende:

def decorator_function(original_function):
 def wrapper_function():
 # zusätzliche Funktionalitäten hier
 original_function()
 # weitere zusätzliche Funktionalitäten
 return wrapper_function

@decorator_function
def display():
 print("Die Display-Funktion wurde aufgerufen")

display()

In diesem Beispiel ist decorator_function der Decorator, der die display-Funktion erweitert. Der
„@“-Operator ist syntaktischer Zucker für display = decorator_function(display).

Verwendung von Decorators

Decorators sind häufig in Web-Frameworks und bei der Entwicklung von APIs zu finden. Einige
gängige Anwendungsfälle für Decorators sind:

Logging
Berechtigungsprüfung
Caching
Überwachung
Änderung der Argumente oder des Rückgabewerts einer Funktion

https://de.wikipedia.org/wiki/Syntaktischer_Zucker

Last update:
2024/03/28 14:07 modul:m323:learningunits:lu05:decorator https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator?rev=1711631267

https://wiki.bzz.ch/ Printed on 2026/02/06 18:14

Decorators für Funktionen mit Parametern

Ein Decorator kann auch Argumente akzeptieren und Rückgabewerte modifizieren. Dazu können die
*args und **kwargs Syntax verwendet werden:

def decorator_function(original_function):
 def wrapper_function(*args, **kwargs):
 print(f"Wrapper executed this before {original_function.__name__}")
 return original_function(*args, **kwargs)
 return wrapper_function

In diesem erweiterten Beispiel kann der wrapper_function jegliche Anzahl von Positional- und
Keyword-Argumenten akzeptieren und an die original_function weitergeben.

Beispiel:

import time

Decorator zum Messen der Ausführungszeit
def time_it(original_function):
 def wrapper_function(*args, **kwargs):
 start_time = time.time()
 result = original_function(*args, **kwargs)
 end_time = time.time()
 print(f"{original_function.__name__} ran in {end_time -
start_time:.10f} seconds")
 return result
 return wrapper_function

Beispiel-Funktion, die den Decorator verwendet
@time_it
def calculate_factorial(num):
 factorial = 1
 for i in range(1, num + 1):
 factorial *= i
 return factorial

Decorators mit eigenen Parametern

Decorators können auch Parameter akzeptieren, um ihre Funktionalität weiter anzupassen. Diese
Parameter können verwendet werden, um das Verhalten des Decorators basierend auf den
übergebenen Werten zu steuern. In diesem Abschnitt werden wir uns ansehen, wie man
funktionsbasierte Decorators mit Parametern erstellt. Ein Decorator mit Parametern ist im Grunde
eine Funktion, die einen Decorator zurückgibt. Diese äußere Funktion akzeptiert die Parameter und
gibt den eigentlichen Decorator (eine innere Funktion) zurück, der die zu dekorierende Funktion
modifiziert.

2026/02/06 18:14 3/4 LU05d - Decorators für Funktionen in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

Syntax

Die grundlegende Syntax für einen Decorator mit Parametern in Python ist die folgende:

def outer_function(parameter):
 def decorator_function(original_function):
 def wrapper_function(*args, **kwargs):
 print(f"Decorator Parameter: {parameter}")
 original_function(*args, **kwargs)
 return wrapper_function
 return decorator_function

@outer_function("Hello, World!")
def display():
 print("Die Display-Funktion wurde aufgerufen.")

In diesem Beispiel akzeptiert der äußere Decorator outer_function einen Parameter und gibt den
eigentlichen Decorator decorator_function zurück. Der „@“-Operator ist hier syntaktischer
Zucker für display = outer_function(„Hello, World!“)(display).

Anwendungsbeispiele

Logging Decorator mit Level

Ein praktisches Beispiel könnte ein Logging-Decorator mit einem Log-Level als Parameter sein.

def logging_decorator(level):
 def decorator_function(original_function):
 def wrapper_function(*args, **kwargs):
 print(f"[{level}] Vor dem Aufruf von
{original_function.__name__}")
 result = original_function(*args, **kwargs)
 print(f"[{level}] Nach dem Aufruf von
{original_function.__name__}")
 return result
 return wrapper_function
 return decorator_function

@logging_decorator("INFO")
def add(a, b):
 return a + b

In diesem Beispiel wird der logging_decorator mit einem Log-Level als Parameter aufgerufen. Der
Decorator gibt dann Log-Nachrichten mit dem entsprechenden Level aus.

M323-LU05

https://wiki.bzz.ch/tag/m323-lu05?do=showtag&tag=M323-LU05

Last update:
2024/03/28 14:07 modul:m323:learningunits:lu05:decorator https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator?rev=1711631267

https://wiki.bzz.ch/ Printed on 2026/02/06 18:14

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator?rev=1711631267

Last update: 2024/03/28 14:07

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator?rev=1711631267

	LU05d - Decorators für Funktionen in Python
	Grundkonzept
	Syntax
	Verwendung von Decorators

	Decorators für Funktionen mit Parametern
	Decorators mit eigenen Parametern
	Syntax
	Anwendungsbeispiele
	Logging Decorator mit Level

