2026/02/06 18:14 1/4 LUO5d - Decorators fur Funktionen in Python

LUO5d - Decorators fur Funktionen in Python

Ein Decorator in Python ist ein Entwurfsmuster, das es erlaubt, einer Funktion zusatzliche
Funktionalitat hinzuzufugen, ohne ihren Code zu andern. Decorators sind sehr leistungsfahig und
nutzlich, da sie den Code sauber halten und die Prinzipien der Wiederverwendbarkeit und Kapselung
fordern.

Grundkonzept

In Python sind Funktionen First-Class-Objekte, das bedeutet, sie kdnnen als Argumente an andere
Funktionen Ubergeben, von anderen Funktionen zuriickgegeben und in Variablen gespeichert werden.
Ein Decorator ist eine Funktion, die eine andere Funktion nimmt und diese erweitert, ohne ihren
Quellcode zu andern.

Syntax

Die grundlegende Syntax fur einen Decorator in Python ist die folgende:

decorator function(original function):
wrapper_ function
zusatzliche Funktionalitaten hier
original function
weitere zusatzliche Funktionalitaten
wrapper_ function

decorator function
display
"Die Display-Funktion wurde aufgerufen"

display

In diesem Beispiel ist decorator function der Decorator, der die display-Funktion erweitert. Der
,@"“-Operator ist syntaktischer Zucker fur display = decorator function(display).

Verwendung von Decorators

Decorators sind haufig in Web-Frameworks und bei der Entwicklung von APIs zu finden. Einige
gangige Anwendungsfalle flr Decorators sind:

e Logging

e Berechtigungsprufung

e Caching

 Uberwachung

» Anderung der Argumente oder des Rickgabewerts einer Funktion

BZZ - Modulwiki - https://wiki.bzz.ch/

https://de.wikipedia.org/wiki/Syntaktischer_Zucker

Last update: e . . _
2024/03/28 14:07 modul:m323:learningunits:lu05:decorator https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator?rev=1711631267

Decorators fur Funktionen mit Parametern

Ein Decorator kann auch Argumente akzeptieren und Ruckgabewerte modifizieren. Dazu kénnen die
*args und **kwargs Syntax verwendet werden:

decorator function(original function
wrapper_ function(*args, **kwargs
f"Wrapper executed this before {original function. name }
original function(*args, **kwargs
wrapper_ function

In diesem erweiterten Beispiel kann der wrapper_ function jegliche Anzahl von Positional- und
Keyword-Argumenten akzeptieren und an die original function weitergeben.

Beispiel:
time

Decorator zum Messen der Ausfuhrungszeit
time it(original function

wrapper_ function(*args, **kwargs

start time = time.time

result = original function(*args, **kwargs

end time = time.time

f"{original function. name_ } ran in {end time -
start time:.10f} seconds"
result
wrapper_ function

Beispiel-Funktion, die den Decorator verwendet

time it
calculate factorial(num):
factorial
i range num +
factorial *= i

factorial

Decorators mit eigenen Parametern

Decorators kénnen auch Parameter akzeptieren, um ihre Funktionalitat weiter anzupassen. Diese
Parameter konnen verwendet werden, um das Verhalten des Decorators basierend auf den
Ubergebenen Werten zu steuern. In diesem Abschnitt werden wir uns ansehen, wie man
funktionsbasierte Decorators mit Parametern erstellt. Ein Decorator mit Parametern ist im Grunde
eine Funktion, die einen Decorator zuruckgibt. Diese aullere Funktion akzeptiert die Parameter und
gibt den eigentlichen Decorator (eine innere Funktion) zurick, der die zu dekorierende Funktion
modifiziert.

https://wiki.bzz.ch/ Printed on 2026/02/06 18:14

2026/02/06 18:14 3/4 LUO5d - Decorators fiir Funktionen in Python

Syntax

Die grundlegende Syntax fur einen Decorator mit Parametern in Python ist die folgende:

outer function(parameter):
decorator function(original function
wrapper_ function(*args, **kwargs
f"Decorator Parameter: {parameter}"
original function(*args, **kwargs
wrapper_ function
decorator function

outer function("Hello, World!"
display
"Die Display-Funktion wurde aufgerufen."

In diesem Beispiel akzeptiert der auBere Decorator outer function einen Parameter und gibt den
eigentlichen Decorator decorator function zuruck. Der ,@“-Operator ist hier syntaktischer
Zucker far display = outer function(,Hello, World!“) (display).

Anwendungsbeispiele

Logging Decorator mit Level

Ein praktisches Beispiel konnte ein Logging-Decorator mit einem Log-Level als Parameter sein.

logging decorator(level
decorator function(original function
wrapper function(*args, **kwargs
f"[{level}] Vor dem Aufruf von
{original function. name }"
result original function(*args, **kwargs
f"[{level}] Nach dem Aufruf von
{original function. name }"
result
wrapper function
decorator function

logging decorator("INFO"
add(a, b):
a+b

In diesem Beispiel wird der Logging decorator mit einem Log-Level als Parameter aufgerufen. Der
Decorator gibt dann Log-Nachrichten mit dem entsprechenden Level aus.

M323-LU05

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/tag/m323-lu05?do=showtag&tag=M323-LU05

Last update:
2024/03/28 14:07

modul:m323:learningunits:lu05:decorator https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator?rev=1711631267

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator?rev=1711631267

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/06 18:14

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu05/decorator?rev=1711631267

	LU05d - Decorators für Funktionen in Python
	Grundkonzept
	Syntax
	Verwendung von Decorators

	Decorators für Funktionen mit Parametern
	Decorators mit eigenen Parametern
	Syntax
	Anwendungsbeispiele
	Logging Decorator mit Level

