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LUOGhHh - Erstellen einer RESTful APl mit Flask
und DAO-Klassen

Nachdem wir unsere DAO-Klassen und Datenmodelle definiert haben, kénnen wir diese nun in einer
RESTful API in Flask nutzen. Eine RESTful APl ermdglicht es Clients, Uber HTTP-Methoden mit dem
Server zu interagieren. In diesem Beispiel werden wir uns auf die CRUD-Operationen fur die
ShoppingItem-Ressource konzentrieren.

HTTP-Methoden und ihre Entsprechung in CRUD

Die folgenden HTTP-Methoden werden verwendet, um CRUD-Operationen auszufuhren:

GET: Lesen (Read)

POST: Erstellen (Create)
PUT: Aktualisieren (Update)
DELETE: Loschen (Delete)

Beispiel fur eine Flask-API

Nachfolgend finden Sie ein einfaches Beispiel, wie die ShoppingItemDao-Klasse in einer Flask-API
verwendet werden kann:

flask Flask, request, jsonify
app Flask( name

app.route('/shoppingItems', methods=['GET'
get items
items vars (item item dao.get all items
jsonify(items

app.route('/shoppingItems/<int:item id>', methods=|['GET'
get item(item id):
item = dao.get item(item id
item:
jsonify(vars(item
jsonify({'error': 'Item not found'

app.route('/shoppingItems', methods=['POST'

add item
data request.get json
new item = ShoppingItem(None, datal'item name'’ datal 'quantity'

dao.add item(new item
jsonify(vars(new item
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app.route('/shoppingltems/<int:item id>', methods=['PUT'

update item(item id
data request.get json
item = dao.get item(item id

item:

item.item name = datal'item name'

item.quantity = datal 'quantity'

dao.update item(item

jsonify(vars(item
jsonify({'error': 'Item not found'

app.route('/shoppingItems/<int:item id>', methods=|'DELETE"
delete item(item id
dao.delete item(item id
jsonify({'success': True

jsonify({'error': 'Item not found'
__hame__ ' _main__ ':
dao = ShoppingItemDao( 'example.db’
app.run
HTTP-Statuscodes

In obigem Beispiel werden HTTP-Statuscodes verwendet, um den Erfolg oder Misserfolg einer
Operation anzugeben:

e 200 OK: Die Anfrage war erfolgreich (fir GET, PUT und DELETE Methoden).
e 201 Created: Ein neuer Eintrag wurde erfolgreich erstellt (fur POST Methode).
¢ 404 Not Found: Die angeforderte Ressource konnte nicht gefunden werden.

Datenaustausch uber JSON

In der APl verwenden wir JSON (JavaScript Object Notation) fur den Datenaustausch. Mit der jsonify-
Funktion aus dem Flask-Paket konnen wir Python-Objekte einfach in JSON umwandeln und als HTTP-
Antwort zurickgeben.

In ahnlicher Weise verwenden wir request.get json() in Flask, um die JSON-Daten aus dem HTTP-
Request-Body zu extrahieren.

Dies ermdglicht eine einfache und standardisierte Kommunikation zwischen dem Client und dem
Server.
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