2026/02/03 12:09 1/3 LUO6h - Erstellen einer RESTful API mit Flask und DAO-Klassen

LUOGhHh - Erstellen einer RESTful APl mit Flask
und DAO-Klassen

Nachdem wir unsere DAO-Klassen und Datenmodelle definiert haben, kénnen wir diese nun in einer
RESTful API in Flask nutzen. Eine RESTful APl ermdglicht es Clients, Uber HTTP-Methoden mit dem
Server zu interagieren. In diesem Beispiel werden wir uns auf die CRUD-Operationen fur die
ShoppingItem-Ressource konzentrieren.

HTTP-Methoden und ihre Entsprechung in CRUD

Die folgenden HTTP-Methoden werden verwendet, um CRUD-Operationen auszufuhren:

GET: Lesen (Read)

POST: Erstellen (Create)
PUT: Aktualisieren (Update)
DELETE: Loschen (Delete)

Beispiel fur eine Flask-API

Nachfolgend finden Sie ein einfaches Beispiel, wie die ShoppingItemDao-Klasse in einer Flask-API
verwendet werden kann:

flask Flask, request, jsonify
app Flask(name

app.route('/shoppingItems', methods=['GET'
get items
items vars (item item dao.get all items
jsonify(items

app.route('/shoppingItems/<int:item id>', methods=|['GET'
get item(item id):
item = dao.get item(item id
item:
jsonify(vars(item
jsonify({'error': 'Item not found'

app.route('/shoppingItems', methods=['POST'

add item
data request.get json
new item = ShoppingItem(None, datal'item name'’ datal 'quantity'

dao.add item(new item
jsonify(vars(new item

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2024/03/28 14:07 modul:m323:learningunits:lu06:api https://wiki.bzz.ch/modul/m323/learningunits/lu06/api

app.route('/shoppingltems/<int:item id>', methods=['PUT'

update item(item id
data request.get json
item = dao.get item(item id

item:

item.item name = datal'item name'

item.quantity = datal 'quantity'

dao.update item(item

jsonify(vars(item
jsonify({'error': 'Item not found'

app.route('/shoppingItems/<int:item id>', methods=|'DELETE"
delete item(item id
dao.delete item(item id
jsonify({'success': True

jsonify({'error': 'Item not found'
__hame__ ' _main__ ':
dao = ShoppingItemDao('example.db’
app.run
HTTP-Statuscodes

In obigem Beispiel werden HTTP-Statuscodes verwendet, um den Erfolg oder Misserfolg einer
Operation anzugeben:

e 200 OK: Die Anfrage war erfolgreich (fir GET, PUT und DELETE Methoden).
e 201 Created: Ein neuer Eintrag wurde erfolgreich erstellt (fur POST Methode).
¢ 404 Not Found: Die angeforderte Ressource konnte nicht gefunden werden.

Datenaustausch uber JSON

In der APl verwenden wir JSON (JavaScript Object Notation) fur den Datenaustausch. Mit der jsonify-
Funktion aus dem Flask-Paket konnen wir Python-Objekte einfach in JSON umwandeln und als HTTP-
Antwort zurickgeben.

In ahnlicher Weise verwenden wir request.get json() in Flask, um die JSON-Daten aus dem HTTP-
Request-Body zu extrahieren.

Dies ermdglicht eine einfache und standardisierte Kommunikation zwischen dem Client und dem
Server.

M323-LU06

© Kevin Maurizi

https://wiki.bzz.ch/ Printed on 2026/02/03 12:09

https://wiki.bzz.ch/tag/m323-lu06?do=showtag&tag=M323-LU06
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/

2026/02/03 12:09 3/3 LUO6h - Erstellen einer RESTful API mit Flask und DAO-Klassen

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu06/api

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu06/api

	LU06h - Erstellen einer RESTful API mit Flask und DAO-Klassen
	HTTP-Methoden und ihre Entsprechung in CRUD
	Beispiel für eine Flask-API

	HTTP-Statuscodes
	Datenaustausch über JSON

