
2026/02/03 12:09 1/3 LU06h - Erstellen einer RESTful API mit Flask und DAO-Klassen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU06h - Erstellen einer RESTful API mit Flask
und DAO-Klassen

Nachdem wir unsere DAO-Klassen und Datenmodelle definiert haben, können wir diese nun in einer
RESTful API in Flask nutzen. Eine RESTful API ermöglicht es Clients, über HTTP-Methoden mit dem
Server zu interagieren. In diesem Beispiel werden wir uns auf die CRUD-Operationen für die
ShoppingItem-Ressource konzentrieren.

HTTP-Methoden und ihre Entsprechung in CRUD

Die folgenden HTTP-Methoden werden verwendet, um CRUD-Operationen auszuführen:

GET: Lesen (Read)
POST: Erstellen (Create)
PUT: Aktualisieren (Update)
DELETE: Löschen (Delete)

Beispiel für eine Flask-API

Nachfolgend finden Sie ein einfaches Beispiel, wie die ShoppingItemDao-Klasse in einer Flask-API
verwendet werden kann:

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route('/shoppingItems', methods=['GET'])
def get_items():
 items = [vars(item) for item in dao.get_all_items()]
 return jsonify(items), 200

@app.route('/shoppingItems/<int:item_id>', methods=['GET'])
def get_item(item_id):
 item = dao.get_item(item_id)
 if item:
 return jsonify(vars(item)), 200
 return jsonify({'error': 'Item not found'}), 404

@app.route('/shoppingItems', methods=['POST'])
def add_item():
 data = request.get_json()
 new_item = ShoppingItem(None, data['item_name'], data['quantity'])
 dao.add_item(new_item)
 return jsonify(vars(new_item)), 201

Last update: 2024/03/28 14:07 modul:m323:learningunits:lu06:api https://wiki.bzz.ch/modul/m323/learningunits/lu06/api

https://wiki.bzz.ch/ Printed on 2026/02/03 12:09

@app.route('/shoppingItems/<int:item_id>', methods=['PUT'])
def update_item(item_id):
 data = request.get_json()
 item = dao.get_item(item_id)
 if item:
 item.item_name = data['item_name']
 item.quantity = data['quantity']
 dao.update_item(item)
 return jsonify(vars(item)), 200
 return jsonify({'error': 'Item not found'}), 404

@app.route('/shoppingItems/<int:item_id>', methods=['DELETE'])
def delete_item(item_id):
 if dao.delete_item(item_id):
 return jsonify({'success': True}), 200
 return jsonify({'error': 'Item not found'}), 404

if __name__ == '__main__':
 dao = ShoppingItemDao('example.db')
 app.run()

HTTP-Statuscodes

In obigem Beispiel werden HTTP-Statuscodes verwendet, um den Erfolg oder Misserfolg einer
Operation anzugeben:

200 OK: Die Anfrage war erfolgreich (für GET, PUT und DELETE Methoden).
201 Created: Ein neuer Eintrag wurde erfolgreich erstellt (für POST Methode).
404 Not Found: Die angeforderte Ressource konnte nicht gefunden werden.

Datenaustausch über JSON

In der API verwenden wir JSON (JavaScript Object Notation) für den Datenaustausch. Mit der jsonify-
Funktion aus dem Flask-Paket können wir Python-Objekte einfach in JSON umwandeln und als HTTP-
Antwort zurückgeben.

In ähnlicher Weise verwenden wir request.get_json() in Flask, um die JSON-Daten aus dem HTTP-
Request-Body zu extrahieren.

Dies ermöglicht eine einfache und standardisierte Kommunikation zwischen dem Client und dem
Server.

M323-LU06

 © Kevin Maurizi

https://wiki.bzz.ch/tag/m323-lu06?do=showtag&tag=M323-LU06
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/

2026/02/03 12:09 3/3 LU06h - Erstellen einer RESTful API mit Flask und DAO-Klassen

BZZ - Modulwiki - https://wiki.bzz.ch/

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu06/api

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu06/api

	LU06h - Erstellen einer RESTful API mit Flask und DAO-Klassen
	HTTP-Methoden und ihre Entsprechung in CRUD
	Beispiel für eine Flask-API

	HTTP-Statuscodes
	Datenaustausch über JSON

