
2026/02/02 21:03 1/3 LU06.A05 - Authentifizierung für die ToDo-Liste API mit Flask-Login

BZZ - Modulwiki - https://wiki.bzz.ch/

LU06.A05 - Authentifizierung für die ToDo-
Liste API mit Flask-Login

Deine Aufgabe ist es, der bereits erstellten RESTful API für
die ToDo-Liste eine Authentifizierungsfunktionalität
hinzuzufügen. Dazu sollst du Flask-Login verwenden.

Vorgehen

0. Vorbereiten

Akzeptiere das GitHub Classroom Assignment
Klone dein persönliches Repository in die Entwicklungsumgebung

1. Integriere Flask-Login

Installiere Flask-Login

Füge Flask-Login >= 0.6.3 in deine requirements.txt Datei hinzu und installiere es.

Initialisiere Flask-Login in deiner Hauptanwendung

from flask_login import LoginManager

login_manager = LoginManager()
login_manager.init_app(app)

2. User-Klasse Erstellen

Ergänze deine User-Klasse, um die Methoden und Eigenschaften, die von Flask-Login erwartet
werden, zu implementieren. Du kannst dies tun, indem du deine Klasse von UserMixin erbst.
Erstelle eine UserDao-Klasse um den User in die Datenbank zu speichern und daraus zu lesen.

3. Implementiere die ''user_loader''-Funktion

Erstelle eine Funktion, die die user_loader-Anforderungen erfüllt.

@login_manager.user_loader
def load_user(user_id):

Last update: 2024/03/28
14:07 modul:m323:learningunits:lu06:aufgaben:auth https://wiki.bzz.ch/modul/m323/learningunits/lu06/aufgaben/auth

https://wiki.bzz.ch/ Printed on 2026/02/02 21:03

 return user_dao.get_user_by_id(int(user_id))

4. Schütze die ToDo-Endpunkte

Füge dem @login_required-Dekorator zu deinen ToDo-Endpunkten hinzu, um
sicherzustellen, dass nur authentifizierte Benutzer darauf zugreifen können.

from flask_login import login_required

@app.route('/todos', methods=['GET'])
@login_required
def get_all_todos():
 # Dein Code hier

5. Implementiere ''Login'' und ''Logout'' Endpunkte

Erstelle Endpunkte für Login und Logout, die die Methoden von Flask-Login verwenden.

from flask_login import login_user, logout_user

@app.route('/login', methods=['POST'])
def login():
 # Dein Code hier

@app.route('/logout', methods=['POST'])
def logout():
 # Dein Code hier

6. Teste deine API

Via API-Testing.http-File im Workspace

oder via:

7. Abgabe

Die Abgabe der Lösung erfolgt als Push in das persönliche GitHub-Repository.

⇒ GitHub Repo für externe Besucher

GitHub Repository https://github.com/templates-python/m323-lu06-a05-authentication

Lernende am BZZ müssen den Link zum GitHub Classroom Assignment verwenden

https://app.getpostman.com/run-collection/21916156-7e24c1ab-b771-4f36-9bf9-9efda9b55507?action=collection%2Ffork&source=rip_markdown&collection-url=entityId%3D21916156-7e24c1ab-b771-4f36-9bf9-9efda9b55507%26entityType%3Dcollection%26workspaceId%3D6159a5bd-9101-4933-a6c3-05d2eb3112fd
https://github.com/templates-python/m323-lu06-a05-authentication

2026/02/02 21:03 3/3 LU06.A05 - Authentifizierung für die ToDo-Liste API mit Flask-Login

BZZ - Modulwiki - https://wiki.bzz.ch/

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu06/aufgaben/auth

Last update: 2024/03/28 14:07

https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu06/aufgaben/auth

	LU06.A05 - Authentifizierung für die ToDo-Liste API mit Flask-Login
	Vorgehen
	0. Vorbereiten
	1. Integriere Flask-Login
	Installiere Flask-Login
	Initialisiere Flask-Login in deiner Hauptanwendung

	2. User-Klasse Erstellen
	3. Implementiere die ''user_loader''-Funktion
	4. Schütze die ToDo-Endpunkte
	5. Implementiere ''Login'' und ''Logout'' Endpunkte
	6. Teste deine API
	7. Abgabe

