2026/02/03 12:09 1/4 LUOGI - Authentifizierung mit Flask-Login

LUOGI - Authentifizierung mit Flask-Login

Flask-Login ist eine Erweiterung fur Flask, die Benutzersitzungen handhabt und es einfach macht,
Funktionen wie Login, Logout und Remember Me zu implementieren. Flask-Login verwendet die
Session-Funktionalitat von Flask, um den angemeldeten Benutzer zu speichern.

Installation

Zuerst mussen wir Flask-Login installieren, dazu passen wir das requirements.txt an:

Flask-Login==0.6.3
Grundlegende Einrichtung

Nach der Installation missen wir Flask-Login in unserer Anwendung initialisieren:
flask login LoginManager

login manager = LoginManager
login manager.init app(app

Benutzerklasse

Die Benutzerklasse muss einige spezielle Methoden erfullen, die von Flask-Login verwendet werden:
get id(), is authenticated, is active und is_anonymous. Im Allgemeinen kann dies durch
die Erweiterung der Benutzerklasse mit der UserMixin-Klasse von Flask-Login erreicht werden:

flask login UserMixin

User(UserMixin
~init (self, user_id, username, email, password
self.id = user id
self.username = username

self.email email
self.password password

Benutzer-DAO-Klasse

Um den User in der Datenbank zu speichern, mussen wir eine entsprechende DAO-Klasse erstellen:
sqlite3

UserDao:

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2024/03/28 14:07 modul:m323:learningunits:lu06:auth https://wiki.bzz.ch/modul/m323/learningunits/lu06/auth

~_init (self, db file
self.conn = sqlite3.connect(db file, check same thread-False
self.cursor = self.conn.cursor

create user table(self

self.cursor.execute('''CREATE TABLE IF NOT EXISTS users (id INTEGER
PRIMARY KEY, username TEXT, email TEXT, password TEXT)'"''

self.conn.commit

add user(self, user):

self.cursor.execute("INSERT INTO users (username, email, password)
VALUES (7, 72, ?)" user.username, user.email, user.password

self.conn.commit

get user by id(self, user id
self.cursor.execute("SELECT * FROM users WHERE id = ?" user id
row = self.cursor.fetchone
row:
User(row row row row
None

get user by username(self, username):
self.cursor.execute("SELECT * FROM users WHERE username = ?"
username
row self.cursor.fetchone
row:
User(row row row row
None

delete user(self, user id
self.cursor.execute("DELETE FROM users WHERE id = ?" user_id
self.cursor.rowcount
self.conn.commit
True
False

close(self
self.conn.close

Diese DAO-Klasse bietet Methoden zum Erstellen der User-Tabelle, zum Hinzufligen von Benutzern
und zum Abrufen von Benutzern anhand ihrer ID oder ihres Benutzernamens

Benutzer-Loader und DAO-Integration

Die user_loader-Funktion ist ein wesentlicher Bestandteil beim Einsatz von Flask-Login. Diese
Funktion ist verantwortlich fUr das Laden eines Benutzerobjekts basierend auf der Benutzer-ID, die in
der Session gespeichert ist. Wenn ein Benutzer sich einloggt, wird seine ID in der Flask-Session
gespeichert. Bei nachfolgenden Anfragen wird diese ID verwendet, um den zugehdrigen Benutzer zu
laden und in das current_user-Objekt zu speichern. Dadurch weil8 die Anwendung wahrend der
gesamten Lebensdauer der Session, wer der aktuelle Benutzer ist.

https://wiki.bzz.ch/ Printed on 2026/02/03 12:09

2026/02/03 12:09 3/4 LUOGI - Authentifizierung mit Flask-Login

Der @login manager.user_ loader-Dekorator markiert die Funktion, die flr das Laden des
Benutzers zustandig ist. Diese Funktion erhalt die Benutzer-ID als Argument, fuhrt die notwendigen
Schritte zur Benutzeridentifizierung durch und gibt das entsprechende Benutzerobjekt zurlck. In
unserem Fall verwendet die user loader-Funktion die get user by id-Methode aus der
UserDao-Klasse.

login manager.user loader
load user(user_ id
user dao.get user by id(int(user id

Das Definieren einer user_ loader-Funktion ist unerlasslich fur das Funktionieren der Flask-Login-
Erweiterung, da sie nicht selbststandig weils, wie Benutzerobjekte aus der Session-ID geladen werden
sollen.

Login und DAO-Integration

Die Login-Funktion wird die get _user by username-Methode verwenden, um den User zu finden:
flask login login required, login user, logout user

app = Flask(_ name
app.secret key ‘supersecretkey' # Add a Secret-Key to the Flask App

app.route('/login', methods=|['POST'
login
data request.get json
user = user _dao.get user by username(datal'username'’
user user.password data['password’
login user(user
jsonify({'success': True
jsonify({'error': 'Invalid username or password'

app.route('/logout'
login required
logout
logout user
jsonify({'success': True

Schutz von Endpunkten

Um Endpunkte zu schutzen, konnen wir den @login_ required-Dekorator verwenden:

app.route('/shoppingitems', methods=['GET'
login required

get shopping items

Implementierung

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2024/03/28 14:07 modul:m323:learningunits:lu06:auth https://wiki.bzz.ch/modul/m323/learningunits/lu06/auth

M323-LU06

© Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu06/auth

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/03 12:09

https://wiki.bzz.ch/tag/m323-lu06?do=showtag&tag=M323-LU06
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu06/auth

	LU06i - Authentifizierung mit Flask-Login
	Installation
	Grundlegende Einrichtung
	Benutzerklasse
	Benutzer-DAO-Klasse
	Benutzer-Loader und DAO-Integration
	Login und DAO-Integration
	Schutz von Endpunkten

