
2026/02/03 12:09 1/4 LU06i - Authentifizierung mit Flask-Login

BZZ - Modulwiki - https://wiki.bzz.ch/

LU06i - Authentifizierung mit Flask-Login

Flask-Login ist eine Erweiterung für Flask, die Benutzersitzungen handhabt und es einfach macht,
Funktionen wie Login, Logout und Remember Me zu implementieren. Flask-Login verwendet die
Session-Funktionalität von Flask, um den angemeldeten Benutzer zu speichern.

Installation

Zuerst müssen wir Flask-Login installieren, dazu passen wir das requirements.txt an:

...
Flask-Login==0.6.3

Grundlegende Einrichtung

Nach der Installation müssen wir Flask-Login in unserer Anwendung initialisieren:

from flask_login import LoginManager

login_manager = LoginManager()
login_manager.init_app(app)

Benutzerklasse

Die Benutzerklasse muss einige spezielle Methoden erfüllen, die von Flask-Login verwendet werden:
get_id(), is_authenticated, is_active und is_anonymous. Im Allgemeinen kann dies durch
die Erweiterung der Benutzerklasse mit der UserMixin-Klasse von Flask-Login erreicht werden:

from flask_login import UserMixin

class User(UserMixin):
 def __init__(self, user_id, username, email, password):
 self.id = user_id
 self.username = username
 self.email = email
 self.password = password

Benutzer-DAO-Klasse

Um den User in der Datenbank zu speichern, müssen wir eine entsprechende DAO-Klasse erstellen:

import sqlite3

class UserDao:

Last update: 2024/03/28 14:07 modul:m323:learningunits:lu06:auth https://wiki.bzz.ch/modul/m323/learningunits/lu06/auth

https://wiki.bzz.ch/ Printed on 2026/02/03 12:09

 def __init__(self, db_file):
 self.conn = sqlite3.connect(db_file, check_same_thread=False)
 self.cursor = self.conn.cursor()

 def create_user_table(self):
 self.cursor.execute('''CREATE TABLE IF NOT EXISTS users (id INTEGER
PRIMARY KEY, username TEXT, email TEXT, password TEXT)''')
 self.conn.commit()

 def add_user(self, user):
 self.cursor.execute("INSERT INTO users (username, email, password)
VALUES (?, ?, ?)", (user.username, user.email, user.password))
 self.conn.commit()

 def get_user_by_id(self, user_id):
 self.cursor.execute("SELECT * FROM users WHERE id = ?", (user_id,))
 row = self.cursor.fetchone()
 if row:
 return User(row[0], row[1], row[2], row[3])
 return None

 def get_user_by_username(self, username):
 self.cursor.execute("SELECT * FROM users WHERE username = ?",
(username,))
 row = self.cursor.fetchone()
 if row:
 return User(row[0], row[1], row[2], row[3])
 return None

 def delete_user(self, user_id):
 self.cursor.execute("DELETE FROM users WHERE id = ?", (user_id,))
 if self.cursor.rowcount > 0:
 self.conn.commit()
 return True
 return False

 def close(self):
 self.conn.close()

Diese DAO-Klasse bietet Methoden zum Erstellen der User-Tabelle, zum Hinzufügen von Benutzern
und zum Abrufen von Benutzern anhand ihrer ID oder ihres Benutzernamens.

Benutzer-Loader und DAO-Integration

Die user_loader-Funktion ist ein wesentlicher Bestandteil beim Einsatz von Flask-Login. Diese
Funktion ist verantwortlich für das Laden eines Benutzerobjekts basierend auf der Benutzer-ID, die in
der Session gespeichert ist. Wenn ein Benutzer sich einloggt, wird seine ID in der Flask-Session
gespeichert. Bei nachfolgenden Anfragen wird diese ID verwendet, um den zugehörigen Benutzer zu
laden und in das current_user-Objekt zu speichern. Dadurch weiß die Anwendung während der
gesamten Lebensdauer der Session, wer der aktuelle Benutzer ist.

2026/02/03 12:09 3/4 LU06i - Authentifizierung mit Flask-Login

BZZ - Modulwiki - https://wiki.bzz.ch/

Der @login_manager.user_loader-Dekorator markiert die Funktion, die für das Laden des
Benutzers zuständig ist. Diese Funktion erhält die Benutzer-ID als Argument, führt die notwendigen
Schritte zur Benutzeridentifizierung durch und gibt das entsprechende Benutzerobjekt zurück. In
unserem Fall verwendet die user_loader-Funktion die get_user_by_id-Methode aus der
UserDao-Klasse.

@login_manager.user_loader
def load_user(user_id):
 return user_dao.get_user_by_id(int(user_id))

Das Definieren einer user_loader-Funktion ist unerlässlich für das Funktionieren der Flask-Login-
Erweiterung, da sie nicht selbstständig weiß, wie Benutzerobjekte aus der Session-ID geladen werden
sollen.

Login und DAO-Integration

Die Login-Funktion wird die get_user_by_username-Methode verwenden, um den User zu finden:

from flask_login import login_required, login_user, logout_user

app = Flask(__name__)
app.secret_key = 'supersecretkey' # Add a Secret-Key to the Flask App

@app.route('/login', methods=['POST'])
def login():
 data = request.get_json()
 user = user_dao.get_user_by_username(data['username'])
 if user and user.password == data['password']:
 login_user(user)
 return jsonify({'success': True}), 200
 return jsonify({'error': 'Invalid username or password'}), 401

@app.route('/logout')
@login_required
def logout():
 logout_user()
 return jsonify({'success': True}), 200

Schutz von Endpunkten

Um Endpunkte zu schützen, können wir den @login_required-Dekorator verwenden:

@app.route('/shoppingitems', methods=['GET'])
@login_required
def get_shopping_items():
 # Implementierung

Last update: 2024/03/28 14:07 modul:m323:learningunits:lu06:auth https://wiki.bzz.ch/modul/m323/learningunits/lu06/auth

https://wiki.bzz.ch/ Printed on 2026/02/03 12:09

M323-LU06

 © Kevin Maurizi

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu06/auth

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/tag/m323-lu06?do=showtag&tag=M323-LU06
https://creativecommons.org/licenses/by-nc-sa/4.0/ch/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu06/auth

	LU06i - Authentifizierung mit Flask-Login
	Installation
	Grundlegende Einrichtung
	Benutzerklasse
	Benutzer-DAO-Klasse
	Benutzer-Loader und DAO-Integration
	Login und DAO-Integration
	Schutz von Endpunkten

