
2026/02/03 07:18 1/5 LU06.L07 - Multiuser Todo-Liste

BZZ - Modulwiki - https://wiki.bzz.ch/

LU06.L07 - Multiuser Todo-Liste

TodoItem

todoItem angepasst um die user_id zu speichern.

todoItem.py

from dataclasses import dataclass

@dataclass
class TodoItem:
 item_id: int
 user_id: int
 title: str
 is_completed: bool

TodoDao

todoDao angepasst um die user_id zu berücksichtigen.

todoDao.py

import sqlite3
from todoItem import TodoItem

class TodoDao:

 def __init__(self, db_file):
 self.conn = sqlite3.connect(db_file, check_same_thread=False)
 self.cursor = self.conn.cursor()

 def create_table(self):
 self.cursor.execute("""DROP TABLE IF EXISTS todo_items""")
 self.cursor.execute(
 """CREATE TABLE IF NOT EXISTS todo_items (
 item_id INTEGER PRIMARY KEY,
 title TEXT,
 is_completed BOOLEAN,
 user_id INTEGER,
 FOREIGN KEY(user_id) REFERENCES users(id))"""
)
 self.conn.commit()

https://github.com/templates-python/m323-lu06-a07-multiuser/blob/solution/todoItem.py
https://github.com/templates-python/m323-lu06-a07-multiuser/blob/solution/todoDao.py

Last update:
2024/03/28
14:07

modul:m323:learningunits:lu06:loesungen:multiuser https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/multiuser

https://wiki.bzz.ch/ Printed on 2026/02/03 07:18

 def add_item(self, todo_item):
 self.cursor.execute(
 "INSERT INTO todo_items (user_id, title, is_completed)
VALUES (?, ?, ?)",
 (todo_item.user_id, todo_item.title,
todo_item.is_completed),
)
 self.conn.commit()

 def get_item(self, item_id, user_id):
 self.cursor.execute(
 "SELECT * FROM todo_items WHERE item_id = ? AND user_id =
?",
 (item_id, user_id),
)
 row = self.cursor.fetchone()
 if row:
 return TodoItem(row[0], row[3], row[1], row[2])
 return None

 def get_all_items(self, user_id):
 self.cursor.execute("SELECT * FROM todo_items WHERE user_id =
?", (user_id,))
 rows = self.cursor.fetchall()
 todo_items = [TodoItem(row[0], row[3], row[1], row[2]) for row
in rows]
 return todo_items

 def update_item(self, todo_item):
 self.cursor.execute(
 "UPDATE todo_items SET title = ?, is_completed = ? WHERE
item_id = ?",
 (todo_item.title, todo_item.is_completed,
todo_item.item_id),
)
 if self.cursor.rowcount > 0:
 self.conn.commit()
 return True
 return False

 def delete_item(self, item_id, user_id):
 self.cursor.execute(
 "DELETE FROM todo_items WHERE item_id = ? AND user_id = ?",
 (item_id, user_id),
)
 if self.cursor.rowcount > 0:
 self.conn.commit()
 return True
 return False

2026/02/03 07:18 3/5 LU06.L07 - Multiuser Todo-Liste

BZZ - Modulwiki - https://wiki.bzz.ch/

 def close(self):
 self.conn.close()

todoBlueprint

todoBlueprint angepasst um jeweils die user_id zu übergeben und alle funktionen mit
@login_required zu ergänzen.

todoBlueprint.py

from flask import Blueprint, jsonify, request
from flask_login import login_required, current_user
from todoDao import TodoDao
from todoItem import TodoItem

todo_blueprint = Blueprint('todo_blueprint', __name__)
todo_dao = TodoDao('todo_example.db')

@todo_blueprint.route('/todos', methods=['GET'])
@login_required
def get_all_todos():
 items = todo_dao.get_all_items(current_user.id)
 return jsonify([item.__dict__ for item in items]), 200

@todo_blueprint.route('/todos/<int:item_id>', methods=['GET'])
@login_required
def get_todo(item_id):
 item = todo_dao.get_item(item_id, current_user.id)
 if item:
 return jsonify(item.__dict__), 200
 else:
 return jsonify({'message': 'Item not found'}), 404

@todo_blueprint.route('/todos', methods=['POST'])
@login_required
def add_todo():
 data = request.get_json()
 new_item = TodoItem(None, current_user.id, data['title'],
data['is_completed'])
 todo_dao.add_item(new_item)
 return jsonify({'message': 'Todo item created'}), 201

@todo_blueprint.route('/todos/<int:item_id>', methods=['PUT'])

https://github.com/templates-python/m323-lu06-a07-multiuser/blob/solution/todoBlueprint.py

Last update:
2024/03/28
14:07

modul:m323:learningunits:lu06:loesungen:multiuser https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/multiuser

https://wiki.bzz.ch/ Printed on 2026/02/03 07:18

@login_required
def update_todo(item_id):
 data = request.get_json()
 updated_item = TodoItem(
 item_id, data['title'], data['is_completed'], current_user.id
)
 if todo_dao.update_item(updated_item):
 return jsonify({'message': 'Item updated'}), 200
 else:
 return jsonify({'message': 'Item not found or not updated'}),
404

@todo_blueprint.route('/todos/<int:item_id>', methods=['DELETE'])
@login_required
def delete_todo(item_id):
 if todo_dao.delete_item(item_id, current_user.id):
 return jsonify({'message': 'Item deleted'}), 200
 else:
 return jsonify({'message': 'Item not found or not deleted'}),
404

main

main angepasst die generierung der demo-daten korrekt zu machen.

main.py

from flask import Flask
from flask_login import LoginManager

from todoBlueprint import todo_blueprint
from userBlueprint import user_blueprint

app = Flask(__name__)
app.secret_key = 'supersecretkey'

login_manager = LoginManager()
login_manager.init_app(app)

@login_manager.user_loader
def load_user(user_id):
 from userDao import UserDao

 user_dao = UserDao('todo_example.db')
 return user_dao.get_user_by_id(int(user_id))

https://github.com/templates-python/m323-lu06-a07-multiuser/blob/solution/main.py

2026/02/03 07:18 5/5 LU06.L07 - Multiuser Todo-Liste

BZZ - Modulwiki - https://wiki.bzz.ch/

app.register_blueprint(todo_blueprint)
app.register_blueprint(user_blueprint)

def generate_testdata():

 from todoItem import TodoItem
 from user import User
 from todoDao import TodoDao
 from userDao import UserDao

 todo_dao = TodoDao('todo_example.db')
 user_dao = UserDao('todo_example.db')

 # Generate user
 user_dao.create_user_table()
 user_dao.add_user(User(1, 'admin', 'admin@example', 'admin'))
 user_dao.add_user(User(2, 'user', 'user@example', 'user'))

 # Generate todo items
 todo_dao.create_table()
 todo_dao.add_item(TodoItem(1, 1, 'Buy milk', False))
 todo_dao.add_item(TodoItem(2, 1, 'Buy eggs', False))
 todo_dao.add_item(TodoItem(3, 2, 'Buy bread', False))
 todo_dao.add_item(TodoItem(4, 2, 'Buy butter', False))

 todo_dao.close()
 user_dao.close()

if __name__ == '__main__':
 generate_testdata()
 app.run(debug=True)

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/multiuser

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/multiuser

	LU06.L07 - Multiuser Todo-Liste
	TodoItem
	TodoDao
	todoBlueprint
	main

