
2026/02/05 20:55 1/4 LU06.L04 - Erstellen einer RESTful API für die ToDo-Liste mit Flask

BZZ - Modulwiki - https://wiki.bzz.ch/

LU06.L04 - Erstellen einer RESTful API für die
ToDo-Liste mit Flask

main.py

main.py

from flask import Flask, jsonify, request
from todoItem import TodoItem # Stellen Sie sicher, dass die TodoItem-
Klasse importiert ist
from todoDao import TodoDao # Stellen Sie sicher, dass die TodoDao-
Klasse importiert ist

app = Flask(__name__)
dao = TodoDao('todo_example.db')
dao.create_table()

@app.route('/todos', methods=['POST'])
def add_todo():
 data = request.get_json()
 new_item = TodoItem(None, data['title'], data['is_completed'])
 dao.add_item(new_item)
 return jsonify({'message': 'Todo item created'}), 201

@app.route('/todos', methods=['GET'])
def get_all_todos():
 items = dao.get_all_items()
 return jsonify([item.__dict__ for item in items]), 200

@app.route('/todos/<int:item_id>', methods=['GET'])
def get_todo(item_id):
 item = dao.get_item(item_id)
 if item:
 return jsonify(item.__dict__), 200
 else:
 return jsonify({'message': 'Item not found'}), 404

@app.route('/todos/<int:item_id>', methods=['PUT'])
def update_todo(item_id):
 data = request.get_json()
 updated_item = TodoItem(item_id, data['title'],
data['is_completed'])
 if dao.update_item(updated_item):

https://github.com/templates-python/m323-lu06-a04-restful/blob/solution/main.py

Last update:
2024/03/28 14:07 modul:m323:learningunits:lu06:loesungen:restful https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/restful

https://wiki.bzz.ch/ Printed on 2026/02/05 20:55

 return jsonify({'message': 'Item updated'}), 200
 else:
 return jsonify({'message': 'Item not found or not updated'}),
404

@app.route('/todos/<int:item_id>', methods=['DELETE'])
def delete_todo(item_id):
 if dao.delete_item(item_id):
 return jsonify({'message': 'Item deleted'}), 200
 else:
 return jsonify({'message': 'Item not found or not deleted'}),
404

if __name__ == '__main__':
 app.run()

todoDao.py

todoDao.py

import sqlite3
from todoItem import TodoItem

TODO: Implementiere die TodoDao-Klasse für CRUD-Operationen
class TodoDao:

 def __init__(self, db_file):
 self.conn = sqlite3.connect(db_file, check_same_thread=False)
 self.cursor = self.conn.cursor()

 def create_table(self):
 self.cursor.execute("""DROP TABLE IF EXISTS todo_items""")
 self.cursor.execute(
 """CREATE TABLE IF NOT EXISTS todo_items (item_id INTEGER
PRIMARY KEY, title TEXT, is_completed BOOLEAN)"""
)
 self.conn.commit()

 def add_item(self, todo_item):
 self.cursor.execute(
 "INSERT INTO todo_items (title, is_completed) VALUES (?,
?)",
 (todo_item.title, todo_item.is_completed),
)

https://github.com/templates-python/m323-lu06-a04-restful/blob/solution/todoDao.py

2026/02/05 20:55 3/4 LU06.L04 - Erstellen einer RESTful API für die ToDo-Liste mit Flask

BZZ - Modulwiki - https://wiki.bzz.ch/

 self.conn.commit()

 def get_item(self, item_id):
 self.cursor.execute("SELECT * FROM todo_items WHERE item_id =
?", (item_id,))
 row = self.cursor.fetchone()
 if row:
 return TodoItem(row[0], row[1], row[2])
 return None

 def get_all_items(self):
 self.cursor.execute("SELECT * FROM todo_items")
 rows = self.cursor.fetchall()
 todo_items = [TodoItem(row[0], row[1], row[2]) for row in rows]
 return todo_items

 def update_item(self, todo_item):
 self.cursor.execute(
 "UPDATE todo_items SET title = ?, is_completed = ? WHERE
item_id = ?",
 (todo_item.title, todo_item.is_completed,
todo_item.item_id),
)
 if self.cursor.rowcount > 0:
 self.conn.commit()
 return True
 return False

 def delete_item(self, item_id):
 self.cursor.execute("DELETE FROM todo_items WHERE item_id = ?",
(item_id,))
 if self.cursor.rowcount > 0:
 self.conn.commit()
 return True
 return False

 def close(self):
 self.conn.close()

todoItem.py

todoItem.py

from dataclasses import dataclass

TODO: Implementiere die TodoItem-Klasse mit @dataclass
@dataclass

https://github.com/templates-python/m323-lu06-a04-restful/blob/solution/todoItem.py

Last update:
2024/03/28 14:07 modul:m323:learningunits:lu06:loesungen:restful https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/restful

https://wiki.bzz.ch/ Printed on 2026/02/05 20:55

class TodoItem:
 item_id: int
 title: str
 is_completed: bool

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/restful

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/restful

	LU06.L04 - Erstellen einer RESTful API für die ToDo-Liste mit Flask
	main.py
	todoDao.py
	todoItem.py

