2026/02/03 19:36 1/3

LU06.L02 - Blog-Verwaltung mit Flask und JSON

LU06.L02 - Blog-Verwaltung mit Flask und

JSON

'content':

'Dies ist der Inhalt des

flask Flask, jsonify, request
app = Flask( name
# Eine einfache Datenstruktur zur Speicherung der Blog-Beitréage
posts
'id': 1, 'title': 'Erster Beitrag'
ersten Beitrags.'
'id': 2, 'title': 'Zweiter Beitrag'

des zweiten Beitrags.'

app.route('/posts', methods=|"'GET'

blog overview

'content':

'Dies ist der Inhalt

"""Gibt eine Ubersicht aller Blog-Beitrdge als JSON zuriick."""

jsonify(posts

app.route('/posts/<int:post id>', methods

blog detail(post id

'GET'

"""Gibt die Details eines bestimmten Blog-Beitrags als JSON zuruck."""

post = next(filter 'id'

Filter

p: p

post id, posts

None) # mit

# post = next((post for post in posts if post['id'] == post id), None) #

mit Generator

# Beide geben einen Iterator mit nur einem Element zurick, dieses kann

mit next() geholt werden.

post:
jsonify(post
jsonify({'message':
'POST'

app.route('/posts', methods

add post

"Post nicht gefunden'

404

"""Flgt einen neuen Blog-Beitrag hinzu und gibt diesen als JSON

zuruck."""
data request.get json
new post
‘id': len(posts) + 1
'title': datal'title’
‘content': datal'content'’

posts.append(new post
jsonify(new post 201

app.route('/posts/<int:post id>', methods

'"DELETE"

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:

2024/03/28

14:07

modul:m323:learningunits:lu06:loesungen:routingmitjson https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/routingmitjson

delete post(post id
"""Loscht einen bestimmten Blog-Beitrag und gibt eine

Bestatigungsnachricht zurick."""

posts
posts post post posts post|'id' post id
jsonify({'message': 'Post erfolgreich geldscht'
__name___ ' main_ ':
app.run
1. Initialisierung und Datenstruktur:

o Wir beginnen mit dem Importieren der notwendigen Module und dem Erstellen einer
Flask-App-Instanz.

o Eine einfache Datenstruktur (posts-Liste) wird erstellt, um die Blog-Beitrage zu
speichern. Jeder Beitrag ist ein Worterbuch mit einem eindeutigen id, einem title und
einem content.

2. Blog-Ubersicht (blog_overview):

o Mit dem Dekorator @app.route('/posts', methods=['GET']) wird eine Route fur
den Pfad /posts definiert, die nur GET-Anfragen akzeptiert.

o Die Funktion gibt eine JSON-Ubersicht aller Blog-Beitrage zuriick.

3. Blog-Details (blog_detail):

o Mit dem Dekorator @app.route('/posts/<int:post id>', methods=['GET'])
wird eine Route fur den Pfad /posts/<post id> definiert, wobei <post id> eine
Variable ist, die die ID des gewunschten Beitrags darstellt.

o Die Funktion sucht nach dem Beitrag mit der angegebenen ID und gibt dessen Details als
JSON zurtick. Wenn der Beitrag nicht gefunden wird, wird eine 404-Nachricht
zurlckgegeben.

4. Beitrag hinzufugen (add_post):

o Mit dem Dekorator @app.route('/posts', methods=['POST']) wird eine Route fur
den Pfad /posts definiert, die nur POST-Anfragen akzeptiert.

o Die Funktion nimmt die Daten aus dem Request-Body, erstellt einen neuen Beitrag und
fugt ihn der posts-Liste hinzu. Der neue Beitrag wird dann als JSON zuruckgegeben.

5. Beitrag loschen (delete_post):

o Mit dem Dekorator @app.route('/posts/<int:post id>',
methods=[ 'DELETE']) wird eine Route flr den Pfad /posts/<post id> definiert, die
nur DELETE-Anfragen akzeptiert.

o Die Funktion entfernt den Beitrag mit der angegebenen ID aus der posts-Liste und gibt
eine Bestatigungsnachricht zurtck

6. App ausfihren:

o Am Ende des Skripts wird die Flask-App mit app.run() gestartet, wenn das Skript direkt

ausgefuhrt wird.
From:

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/routingmitjson j "' .

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2026/02/03 19:36


https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m323/learningunits/lu06/loesungen/routingmitjson

2026/02/03 19:36 3/3 LU06.L02 - Blog-Verwaltung mit Flask und JSON

BZZ - Modulwiki - https://wiki.bzz.ch/



	LU06.L02 - Blog-Verwaltung mit Flask und JSON

