
2026/02/03 07:36 1/3 LU02c - Test Coverage

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02c - Test Coverage

Siehe auch BrowserStack - Test Coverage Techniques

Testabdeckung bezeichnet das Verhältnis zwischen den
möglichen und den tatsächlich getesteten Teilen einer
Software. Beispielsweise misst die Codeabdeckung das
Verhältnis zwischen allen vorhandenen Codezeilen und den
Codezeilen, die in allen Testfällen ausgeführt wurden.

Testabdeckung kann als Metrik in jeder Teststufe verwendet werden. Beim Unit-Test wird unter
anderem der Prozentsatz der ausgeführten Codezeilen überprüft.

Vorteile von Testabdeckung

Wenn wir die Testabdeckung unserer Anwendung kontinuierlich messen, ergeben sich einige Vorteile:

Früheres Erkennen: Wir erkennen Lücken in unserer Anwendung oder in den Testfällen
früher. Je früher wir ein Problem erkennen, desto einfacher ist es, es zu beheben.
Redundanzen eliminieren: Die Testabdeckung hilft uns, Redundanzen zu erkennen und zu
beseitigen.
Weniger Aufwand: Eine bessere Testabdeckung bedeutet weniger Fehler in späteren
Teststufen und in der Produktion. Dadurch verringert sich der Aufwand für die Fehlerbehebung
und die Qualitätssicherung.

Code-Abdeckung (Code Coverage)

Code Coverage ist für das White Box Testing in Unit- und Integrationstests von großer Bedeutung. Mit
Hilfe von Werkzeugen wird gemessen, wie vollständig der Code getestet wurde. Eine hohe Code
Coverage erhöht die Wahrscheinlichkeit, dass Fehler frühzeitig erkannt und behoben werden. Darüber
hinaus helfen Kennzahlen zur Codeabdeckung zu erkennen, welche zusätzlichen Testfälle benötigt
werden.

Die Code Coverage setzt sich aus mehreren Ebenen zusammen.

Anweisungsabdeckung (Statement Coverage)

Die Anweisungsabdeckung misst, wieviel Prozent der Anweisungen im Sourcecode ausgeführt
wurden.

https://www.browserstack.com/guide/test-coverage-techniques

Last update: 2024/10/01 10:54 modul:m450:learningunits:lu02:coverage https://wiki.bzz.ch/modul/m450/learningunits/lu02/coverage

https://wiki.bzz.ch/ Printed on 2026/02/03 07:36

Zweigabdeckung (Branch Coverage)

Die Zweigabdeckung misst, ob bei jeder Entscheidung innerhalb des Codes (if, while, until, switch, …)
jeder Zweig einmal durchgeführt wurde.

num1 = int(input('Number >'))
if num1 > 0:
 print('valid')

num1 = int(input('Number >'))
if num1 > 0:
 print('valid')
else:
 print('invalid')

Da es im Code nur einen Branch für if gibt, reicht ein
einziger Testfall um eine Branch Coverage von 100% zu
erreichen.

In diesem Beispielcode brauchen wir 2
Testfälle für if und else.

Bedingungsabdeckung (Condition Coverage)

Die Bedingungsabdeckung misst, ob jede (Teil-)Bedingung einmal mit true und einmal mit false
ausgewertet wurde.

num1 = int(input('Number >'))
if num1 > 0:
 print('valid')

num1 = int(input('Number >'))
if num1 > 0:
 print('valid')
else:
 print('invalid')

Auch wenn es im linken Beispiel keinen else-Zweig gibt, müssen wir für die Decision Coverage beide
möglichen Ergebnisse für die Bedingung prüfen. Beide Beispiele benötigen also 2 Testfälle.

num1 = int(input('Number >'))
if num1 > 0 and num1 < 100:
 print('valid')

In diesem Beispiel haben wir eine verknüpfte Bedingung. Somit müssen wir alle 4 möglichen
Kombinationen von true und false der Teilbedingungen testen:

num1 > 0 num1 < 100
true true
true false
false true
false false

Funktionsabdeckung (Function Coverage)

Die Funktionsabdeckung misst die Anzahl der ausgeführten Funktionen im Verhältnis zur Anzahl aller
Funktionen.

M450-LU02

 Marcel Suter

https://wiki.bzz.ch/tag/m450-lu02?do=showtag&tag=M450-LU02
https://creativecommons.org/licenses/by-nc-sa/4.0/

2026/02/03 07:36 3/3 LU02c - Test Coverage

BZZ - Modulwiki - https://wiki.bzz.ch/

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lu02/coverage

Last update: 2024/10/01 10:54

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu02/coverage

	LU02c - Test Coverage
	Vorteile von Testabdeckung
	Code-Abdeckung (Code Coverage)
	Anweisungsabdeckung (Statement Coverage)
	Zweigabdeckung (Branch Coverage)
	Bedingungsabdeckung (Condition Coverage)
	Funktionsabdeckung (Function Coverage)

