
2026/02/03 21:30 1/3 LU02c - Test Coverage

BZZ - Modulwiki - https://wiki.bzz.ch/

LU02c - Testabdeckung

Siehe auch BrowserStack - Test Coverage Techniques

Testabdeckung bezeichnet das Verhältnis zwischen den
möglichen und den tatsächlich getesteten Teilen einer
Software. Als Beispiel misst die Codeabdeckung das
Verhältnis zwischen allen vorhandenen Codezeilen und den
Codezeilen die im Rahmen aller Testfälle ausgeführt wurden.

Testabdeckung kann als Metrik in jeder Teststufe eingesetzt werden. Beim Unit Test wird unter
anderem der Prozentsatz der ausgeführten Codezeilen geprüft.

Vorteile der Testabdeckung

Wenn wir die Testabdeckung unserer Applikation fortlaufend messen, ergeben sich einige Vorteile:

Frühes Erkennen: Wir entdecken früher Lücken in unserer Applikation oder in den Testfällen.
Je früher wir ein Problem erkennen, desto einfacher kann es beseitigt werden.
Redundanzen eliminieren: Die Testabdeckung hilft uns Redundanzen zu erkennen und zu
eliminieren.
Weniger Aufwand: Eine bessere Testabdeckung bedeutet weniger Fehler in späteren
Teststufen und in der Produktion. Dadurch verringert sich der Aufwand für die Fehlerbeseitigung
und die Qualitätssicherung.

Codeabdeckung (Code Coverage)

Die Codeabdeckung ist für das White Box-Testing in Unit und Integrationstests von grosser
Bedeutung. Mit Hilfe von Werkzeugen wird gemessen, wie vollständig der Code getestet wurde. Eine
hohe Codeabdeckung erhöht die Wahrscheinlichkeit, dass Fehler früh erkannt und beseitigt werden.
Zudem helfen die Kennzahlen der Codeabdeckung zu erkennen, welche zusätzlichen Testfälle
benötigt werden.

Die Codeabdeckung setzt sich aus mehreren Ebenen zusammen.

Anweisungsabdeckung (Statement Coverage)

Die Anweisungsabdeckung misst, wieviel Prozent der Anweisungen im Sourcecode ausgeführt
wurden.

https://www.browserstack.com/guide/test-coverage-techniques

Last update:
2024/03/28 14:07 modul:m450:learningunits:lu02:coverage https://wiki.bzz.ch/modul/m450/learningunits/lu02/coverage?rev=1711631267

https://wiki.bzz.ch/ Printed on 2026/02/03 21:30

Zweigabdeckung (Branch Coverage)

Die Zweigabdeckung misst, ob bei jeder Entscheidung innerhalb des Codes (if, while, until, switch, …)
jeder Zweig einmal durchgeführt wurde.

num1 = int(input('Number >'))
if num1 > 0:
 print('valid')

num1 = int(input('Number >'))
if num1 > 0:

 print('valid')
else:

 print('invalid')
Da es im Code nur einen Branch für if gibt, reicht ein
einziger Testfall um eine Branch Coverage von 100% zu
erreichen.

In diesem Beispielcode brauchen wir 2
Testfälle für if und else.

Bedingungsabdeckung (Condition Coverage)

Die Bedingungsabdeckung misst, ob jede (Teil-)Bedingung einmal mit true und einmal mit false
ausgewertet wurde.

num1 = int(input('Number >'))
if num1 > 0:
 print('valid')

num1 = int(input('Number >'))
if num1 > 0:

 print('valid')
else:

 print('invalid')
Auch wenn es im linken Beispiel keinen else-Zweig gibt, müssen wir für die Decision Coverage beide
möglichen Ergebnisse für die Bedingung prüfen. Beide Beispiele benötigen also 2 Testfälle.

num1 = int(input('Number >'))
if num1 > 0 and num1 < 100:
 print('valid')

In diesem Beispiel haben wir eine verknüpfte Bedingung. Somit müssen wir alle 4 möglichen
Kombinationen von true und false der Teilbedingungen testen:

num1 > 0 num1 < 100
true true
true false
false true
false false

Funktionsabdeckung (Function Coverage)

Die Funktionsabdeckung misst die Anzahl der ausgeführten Funktionen im Verhältnis zur Anzahl aller
Funktionen.

M450-LU02

https://wiki.bzz.ch/tag/m450-lu02?do=showtag&tag=M450-LU02

2026/02/03 21:30 3/3 LU02c - Test Coverage

BZZ - Modulwiki - https://wiki.bzz.ch/

 Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lu02/coverage?rev=1711631267

Last update: 2024/03/28 14:07

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu02/coverage?rev=1711631267

	LU02c - Testabdeckung
	Vorteile der Testabdeckung
	Codeabdeckung (Code Coverage)
	Anweisungsabdeckung (Statement Coverage)
	Zweigabdeckung (Branch Coverage)
	Bedingungsabdeckung (Condition Coverage)
	Funktionsabdeckung (Function Coverage)

