2026/02/03 11:01 1/3 LUO3a - Unit Tests

LUO3a - Unit Tests

Unit Tests resp. Komponententests sind automatisierte
Tests kleiner Codeeinheiten, die isoliert getestet werden
g und weisen Aspekte von White-Box und Black-Box Tests auf
o (siehe Theorie Uber Testverfahren). Im Wesentlichen ist ein
Unit Test ein Programm, das die offentlichen Methoden einer
Klasse aufruft und Gberprift, ob die Ergebnisse den
Erwartungen entspricht.

Vorteile von Unit Tests

Wenn Sie lhre Komponententests richtig geschrieben haben, bringen sie mehrere Vorteile bezgl. der
Wartung des Codes:

e Dank Komponententests werden Fehler bereits wahrend der Entwicklung gefunden:
Wenn Sie einen Codeabschnitt umgestalten oder erweitern und Ihre friheren
Tests fehlschlagen, haben Sie das Verhalten dieser Methode geandert, was auf einen Fehler
hinweisen kdnnte.

e Der Korrekturaufwand fur neu gefundenen Fehler ist erheblich geringer, als wenn diese erst im
laufenden Betrieb gefunden werden.

e Mit anderen Worten, Komponententests schutzen Ihren Code vor Regression (d.h.
Systemanderungen, die Fehler verursachen).

e Nachdem Sie Ihren Code geandert haben, mussen Sie die Testsuite ausfuhren! Auf diese Weise
finden Sie heraus, ob es eine Regression gab (wenn ein Test fehlschlagt).

Unit Tests bilden die Basis der Testpyramide

Fachlich . Sehwinr
. Explorative nLE

Tests

- .ﬂ

Z E

Z g

% g

b =

Z

Komponententests

L H L ]

Technisch U n It‘TEStS Einfach

BZZ - Modulwiki - https://wiki.bzz.ch/


https://wiki.bzz.ch/_detail/modul/m450/learningunits/lu03/testpyramide.png?id=modul%3Am450%3Alearningunits%3Alu03%3Aunittest

Last update:

2024/03/28 14:07 modul:m450:learningunits:lu03:unittest https://wiki.bzz.ch/modul/m450/learningunits/lu03/unittest?rev=1711631267

Wie sind Unit Tests zu implementieren?

So wie es die SOLID Principles fur die Programmierung im Allgemeinen haben, gibt es auch Prinzipien
fur allgemeine bewahrte Verfahren beim Unit Testing: die FIRST Principles. Gehen wir sie durch.

[Flast

Sie sollten nicht z6gern, die Testsuite zu jedem Zeitpunkt des Entwicklungszyklus auszufuhren,
selbst wenn es Tausende von Unit Tests gibt. Sie sollten in Sekundenschnelle ausgefuhrt

werden. Wenn die Ausfihrung eines Tests zu lange dauert, leistet dieser wahrscheinlich mehr, als er
sollte - und ist daher kein Unit Test!

[IIndependent resp. [I]lsolated

Jeder einzelne Test sollte unabhangig von allen anderen sein, damit seine Ergebnisse nicht von
anderen Faktoren beeinflusst werden. Mit dieser Definition sollten Sie normalerweise den ,3 A’'s des
Testens” folgen: Arrange, Act, Assert (auch bekannt als , Given-When-Then*).

e Arrange: Alle erforderlichen Daten sollten dem Test in diesem Abschnitt zur Verfugung gestellt
werden und diese sollten nicht von lhrer Umgebung abhangen.

e Act: Hier fuhren Sie die zu testende Methode aus.

e Assert: Unit Tests haben maoglichst nur ein Ergebnis. Das bedeutet, dass pro Test nur
ein bestimmter Zustand eines Objekts Uberpruft werden sollte. Dies bedeutet, dass
sich alle getesteten Variablen auf die von lhnen ausgefiuhrte Methode beziehen sollten.

[R]epeatable

Tests sollten wiederholbar und deterministisch sein: d.h. das Ergebnis ist jedes Mal dasselbe und zwar
unabhangig von der Umgebung.

[S]self-Validating

Der Test selbst sollte Innen sagen, ob er bestanden wurde. Eine manuelle Uberpriifung der Werte
sollte nicht erforderlich sein. Die meisten Bibliotheken (wie pytest, siehe Doku) arbeiten zugunsten
dieses Prinzips.

[Tlhorough

Ihr Test sollte alle , glticklichen Pfade” einer Methode abdecken, alle Randfalle (bei denen Sie glauben,
dass der Test fehlschlagen kénnte), illegale Argumente, Sicherheitsllicken, grosse Wert etc. Mit
anderen Worten: jedes magliche Szenario sollte getestet werden und nicht nur genug, um eine
(nahezu) 100%ige Codeabdeckung zu haben.

https://wiki.bzz.ch/ Printed on 2026/02/03 11:01


https://en.wikipedia.org/wiki/SOLID
https://docs.pytest.org/en/7.1.x/getting-started.html

2026/02/03 11:01 3/3 LUO3a - Unit Tests

Das zusatzliche T: Timely

Gemass @ TDD sollten Komponententests vor dem zu testenden Produktionscode geschrieben
werden. Dies geschieht, indem die Abstraktion (Schnittstelle) und dann der Test allein auf der
Grundlage der Methodensignatur und -spezifikation geschrieben wird. Nachdem der Test geschrieben
ist, kann der produktive Code implementiert und direkt getestet werden.

M450-LU03

Credits: Der Inhalt dieses Artikels wurde grosstenteils direkt aus dem Englischen ubernommen und
nur leicht modifiziert. Das Original stammt aus diesem Beitrag der DEV Community, verfasst von
Lucas Fonseca Mundim

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: =
https://wiki.bzz.ch/modul/m450/learningunits/lu03/unittest?rev=1711631267

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/


https://de.wikipedia.org/wiki/Testgetriebene_Entwicklung
https://de.wikipedia.org/wiki/Testgetriebene_Entwicklung
https://wiki.bzz.ch/tag/m450-lu03?do=showtag&tag=M450-LU03
https://dev.to/mundim/writing-your-f-i-r-s-t-unit-tests-1iop
https://dev.to/mundim
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu03/unittest?rev=1711631267

	LU03a - Unit Tests
	Vorteile von Unit Tests
	Unit Tests bilden die Basis der Testpyramide
	Wie sind Unit Tests zu implementieren?
	[F]ast
	[I]ndependent resp. [I]solated
	[R]epeatable
	[S]self-Validating
	[T]horough
	Das zusätzliche T: Timely



