2026/02/03 07:36 1/4 LUO4b - Funktionen und Klassen simulieren

LUO4b - Funktionen und Klassen simulieren

Mit monkeypatch kdnnen Funktionen und Klassen wahrend
des Tests simuliert werden. Dadurch kénnen einzelne
Programmteile isoliert getestet werden.

Ein Unittest soll eine einzelne Funktion oder sogar nur Teile einer Funktion testen. Die zu testende
Funktion wird aber in der Regel Objekte verarbeiten und weitere Funktionen/Methoden aufrufen.
Funktionen und Klassen werden bei Unittests simuliert (oder ,gemockt”), um bestimmte
Abhangigkeiten zu isolieren und das Testen einzelner Komponenten zu ermdglichen, ohne dass
externe Systeme oder komplexe Ablaufe involviert sind. Hier sind die Hauptgrinde, warum Mocking
beim Testen hilfreich ist:

Isolation der Testobjekte

Mocking hilft, sich nur auf die zu testende Funktion oder Klasse zu konzentrieren, ohne dass
Abhangigkeiten zu anderen Modulen oder Komponenten den Test beeinflussen. So konnen wir
sicherstellen, dass der Test nur das Verhalten der spezifischen Komponente Uberprift und nicht durch
externe Faktoren verzerrt wird.

Vermeidung externer Abhangigkeiten

In vielen Anwendungen greifen Funktionen und Klassen auf externe Ressourcen zu, wie Datenbanken,
APIs, Dateisysteme oder Netzwerke. Diese Ressourcen sind oft schwer zuganglich, langsam oder
unzuverlassig. Durch Mocking werden solche Abhangigkeiten ersetzt, sodass Tests schnell,
zuverlassig und unabhangig von der Verflugbarkeit externer Ressourcen sind.

Kontrolle uber Riickgabewerte und Fehlerzustande

Mocks ermadglichen es, gezielt verschiedene Rickgabewerte oder Fehler zu simulieren, um zu
uberprufen, wie die getestete Komponente darauf reagiert. So lassen sich Szenarien testen, die in der
realen Umgebung schwer reproduzierbar waren, wie Netzwerkfehler oder spezifische Ausnahmefalle.

Verbesserte Performance

Da Mocks die tatsachlichen Ausfihrungen komplexer Funktionen oder Klassen ersetzen, laufen Tests
oft schneller und bendétigen weniger Ressourcen. Besonders bei groRen Test-Suites fuhrt dies zu einer
deutlichen Zeitersparnis.

Insgesamt macht Mocking Unittests flexibler, effizienter und zuverlassiger, was die Qualitat und
Wartbarkeit des Codes verbessert.

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2024/11/12

07:30 modul:m450:learningunits:lu04:monkeypatch https://wiki.bzz.ch/modul/m450/learningunits/lu04/monkeypatch

Funktionen simulieren

Nehmen wir einmal an, wir mochten eine Funktion process data testen. Diese Funktion ruft eine
andere Funktion get data from database auf, welche die Daten liest.. Fir unsere Unittests der
Funktion process data wollen wir die Funktion get data from database simulieren.

my module.py

get data from database
Diese Funktion wirde normalerweise eine Datenbank abfragen und Daten
zuruckgeben.
Wir simulieren diese Funktion im Test.
Hier kénnte normalerweise eine Datenbankabfrage stehen
NotImplementedError("Diese Funktion greift normalerweise auf eine
Datenbank zu."

process data

Diese Funktion ruft Daten von der Datenbank ab und verarbeitet sie.

data = get data from database
Verarbeiten wir die Daten (hier nur ein einfaches Beispiel)

item * 2 item data
pytest
my module process data

Fixture zum Simulieren der Datenbankabfrage-Funktion
pytest.fixture

mock get data from database(monkeypatch

Simuliert die Funktion "get data from database , um feste Testdaten
zuruckzugeben.

mock data
1, 2, 3] # Beispielhafte Testdaten, die anstelle echter

Daten zurickgegeben werden

Ersetzen der echten Funktion durch die simulierte Version
monkeypatch.setattr("my module.get data from database", mock data

test process data(mock get data from database

Testet die Funktion “process data , indem die Datenbankabfrage-Funktion
simuliert wird.

result = process data

https://wiki.bzz.ch/ Printed on 2026/02/03 07:36

2026/02/03 07:36 3/4 LUO4b - Funktionen und Klassen simulieren

result 2, 4, 6 "Die Daten sollten verdoppelt werden."

Mit der Zeile monkeypatch.setattr(,my module.get data from database”, mock data)
teilen wir Pytest mit, dass anstelle von get data from database die Funktion mock data
aufgerufen wird.

Klassen simulieren

Auch ganze Klassen mit ihren Attributen und Methoden lassen sich in Unittests simulieren. Einerseits
lasst sich dadurch eine Funktion testen, bevor die Klasse Uberhaupt realisiert wurde. Andererseits
isolieren wir die zu testende Funktion von allfalligen Fehlern in der Umsetzung der Klasse.

database module.py

DatabaseClient:

Klasse zum Verbinden mit einer Datenbank und Abrufen von Daten.
fetch data(self
In einer echten Anwendung wirde hier eine Datenbankabfrage stehen.
NotImplementedError("“Verbindung zur echten Datenbank."

get processed data(db client

Funktion, die Daten vom DatabaseClient abruft und verarbeitet.
data = db client.fetch data
Beispielhafte Verarbeitung: jedes Element um 1 erhohen

item + 1 item data

test database module.py

pytest
database module get processed data

Fixture zum Simulieren der Klasse DatabaseClient
pytest.fixture
mock db client (monkeypatch

Simuliert die DatabaseClient-Klasse, um feste Testdaten zuruckzugeben.
Simulierte Klasse
MockDatabaseClient:
fetch data(self):
10, 20, 30] # Beispielhafte Testdaten

Ersetzen der echten DatabaseClient-Klasse durch die simulierte Version
monkeypatch.setattr("database module.DatabaseClient"
MockDatabaseClient

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2024/11/12

07:30 modul:m450:learningunits:lu04:monkeypatch https://wiki.bzz.ch/modul/m450/learningunits/lu04/monkeypatch

Instanz der simulierten Klasse zurickgeben
MockDatabaseClient

test get processed data(mock db client
Testet die Funktion "get processed data , indem die DatabaseClient-
Klasse simuliert wird.
result = get processed data(mock db client
result "Die Daten sollten um 1 erhdht werden.”

Erlauterung

Fixture mock_db_client:

Diese Fixture erstellt eine simulierte Version der DatabaseClient-Klasse, die eine Methode
fetch data() bereitstellt, welche die Beispiel-Daten [10, 20, 30] zurtckgibt. Mit
monkeypatch.setattr ersetzen wir die echte DatabaseClient-Klasse in database module durch
die simulierte MockDatabaseClient-Klasse. Die Fixture gibt eine Instanz von MockDatabaseClient
zurlck, die im Test verwendet wird.

Test test_get_processed_data:

Der Test nutzt die Fixture mock _db_client, um get processed data zu testen. Da
get processed data nun auf die simulierten Daten [10, 20, 30] zugreift, sollte das Ergebnis [11,
21, 31] sein (jedes Element um 1 erhoht). Der Test Uberpruft dies mit einer assert-Anweisung.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lu04/monkeypatch

Last update: 2024/11/12 07:30

https://wiki.bzz.ch/ Printed on 2026/02/03 07:36

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu04/monkeypatch

	LU04b - Funktionen und Klassen simulieren
	Isolation der Testobjekte
	Vermeidung externer Abhängigkeiten
	Kontrolle über Rückgabewerte und Fehlerzustände
	Verbesserte Performance
	Funktionen simulieren
	Klassen simulieren
	Erläuterung

