
2026/02/03 07:36 1/4 LU04b - Funktionen und Klassen simulieren

BZZ - Modulwiki - https://wiki.bzz.ch/

LU04b - Funktionen und Klassen simulieren

Mit monkeypatch können Funktionen und Klassen während
des Tests simuliert werden. Dadurch können einzelne
Programmteile isoliert getestet werden.

Ein Unittest soll eine einzelne Funktion oder sogar nur Teile einer Funktion testen. Die zu testende
Funktion wird aber in der Regel Objekte verarbeiten und weitere Funktionen/Methoden aufrufen.
Funktionen und Klassen werden bei Unittests simuliert (oder „gemockt“), um bestimmte
Abhängigkeiten zu isolieren und das Testen einzelner Komponenten zu ermöglichen, ohne dass
externe Systeme oder komplexe Abläufe involviert sind. Hier sind die Hauptgründe, warum Mocking
beim Testen hilfreich ist:

Isolation der Testobjekte

Mocking hilft, sich nur auf die zu testende Funktion oder Klasse zu konzentrieren, ohne dass
Abhängigkeiten zu anderen Modulen oder Komponenten den Test beeinflussen. So können wir
sicherstellen, dass der Test nur das Verhalten der spezifischen Komponente überprüft und nicht durch
externe Faktoren verzerrt wird.

Vermeidung externer Abhängigkeiten

In vielen Anwendungen greifen Funktionen und Klassen auf externe Ressourcen zu, wie Datenbanken,
APIs, Dateisysteme oder Netzwerke. Diese Ressourcen sind oft schwer zugänglich, langsam oder
unzuverlässig. Durch Mocking werden solche Abhängigkeiten ersetzt, sodass Tests schnell,
zuverlässig und unabhängig von der Verfügbarkeit externer Ressourcen sind.

Kontrolle über Rückgabewerte und Fehlerzustände

Mocks ermöglichen es, gezielt verschiedene Rückgabewerte oder Fehler zu simulieren, um zu
überprüfen, wie die getestete Komponente darauf reagiert. So lassen sich Szenarien testen, die in der
realen Umgebung schwer reproduzierbar wären, wie Netzwerkfehler oder spezifische Ausnahmefälle.

Verbesserte Performance

Da Mocks die tatsächlichen Ausführungen komplexer Funktionen oder Klassen ersetzen, laufen Tests
oft schneller und benötigen weniger Ressourcen. Besonders bei großen Test-Suites führt dies zu einer
deutlichen Zeitersparnis.

Insgesamt macht Mocking Unittests flexibler, effizienter und zuverlässiger, was die Qualität und
Wartbarkeit des Codes verbessert.

Last update: 2024/11/12
07:30 modul:m450:learningunits:lu04:monkeypatch https://wiki.bzz.ch/modul/m450/learningunits/lu04/monkeypatch

https://wiki.bzz.ch/ Printed on 2026/02/03 07:36

Funktionen simulieren

Nehmen wir einmal an, wir möchten eine Funktion process_data testen. Diese Funktion ruft eine
andere Funktion get_data_from_database auf, welche die Daten liest.. Für unsere Unittests der
Funktion process_data wollen wir die Funktion get_data_from_database simulieren.

my_module.py

def get_data_from_database():
 """
 Diese Funktion würde normalerweise eine Datenbank abfragen und Daten
zurückgeben.
 Wir simulieren diese Funktion im Test.
 """
 # Hier könnte normalerweise eine Datenbankabfrage stehen
 raise NotImplementedError("Diese Funktion greift normalerweise auf eine
Datenbank zu.")

def process_data():
 """
 Diese Funktion ruft Daten von der Datenbank ab und verarbeitet sie.
 """
 data = get_data_from_database()
 # Verarbeiten wir die Daten (hier nur ein einfaches Beispiel)
 return [item * 2 for item in data]

import pytest
from my_module import process_data

Fixture zum Simulieren der Datenbankabfrage-Funktion
@pytest.fixture
def mock_get_data_from_database(monkeypatch):
 """
 Simuliert die Funktion `get_data_from_database`, um feste Testdaten
zurückzugeben.
 """
 def mock_data():
 return [1, 2, 3] # Beispielhafte Testdaten, die anstelle echter
Daten zurückgegeben werden

 # Ersetzen der echten Funktion durch die simulierte Version
 monkeypatch.setattr("my_module.get_data_from_database", mock_data)

def test_process_data(mock_get_data_from_database):
 """
 Testet die Funktion `process_data`, indem die Datenbankabfrage-Funktion
simuliert wird.
 """
 result = process_data()

2026/02/03 07:36 3/4 LU04b - Funktionen und Klassen simulieren

BZZ - Modulwiki - https://wiki.bzz.ch/

 assert result == [2, 4, 6], "Die Daten sollten verdoppelt werden."

Mit der Zeile monkeypatch.setattr(„my_module.get_data_from_database“, mock_data)
teilen wir Pytest mit, dass anstelle von get_data_from_database die Funktion mock_data
aufgerufen wird.

Klassen simulieren

Auch ganze Klassen mit ihren Attributen und Methoden lassen sich in Unittests simulieren. Einerseits
lässt sich dadurch eine Funktion testen, bevor die Klasse überhaupt realisiert wurde. Andererseits
isolieren wir die zu testende Funktion von allfälligen Fehlern in der Umsetzung der Klasse.

database_module.py

class DatabaseClient:
 """
 Klasse zum Verbinden mit einer Datenbank und Abrufen von Daten.
 """
 def fetch_data(self):
 # In einer echten Anwendung würde hier eine Datenbankabfrage stehen.
 raise NotImplementedError("Verbindung zur echten Datenbank.")

def get_processed_data(db_client):
 """
 Funktion, die Daten vom DatabaseClient abruft und verarbeitet.
 """
 data = db_client.fetch_data()
 # Beispielhafte Verarbeitung: jedes Element um 1 erhöhen
 return [item + 1 for item in data]

test_database_module.py

import pytest
from database_module import get_processed_data

Fixture zum Simulieren der Klasse DatabaseClient
@pytest.fixture
def mock_db_client(monkeypatch):
 """
 Simuliert die DatabaseClient-Klasse, um feste Testdaten zurückzugeben.
 """
 # Simulierte Klasse
 class MockDatabaseClient:
 def fetch_data(self):
 return [10, 20, 30] # Beispielhafte Testdaten

 # Ersetzen der echten DatabaseClient-Klasse durch die simulierte Version
 monkeypatch.setattr("database_module.DatabaseClient",
MockDatabaseClient)

Last update: 2024/11/12
07:30 modul:m450:learningunits:lu04:monkeypatch https://wiki.bzz.ch/modul/m450/learningunits/lu04/monkeypatch

https://wiki.bzz.ch/ Printed on 2026/02/03 07:36

 # Instanz der simulierten Klasse zurückgeben
 return MockDatabaseClient()

def test_get_processed_data(mock_db_client):
 """
 Testet die Funktion `get_processed_data`, indem die DatabaseClient-
Klasse simuliert wird.
 """
 result = get_processed_data(mock_db_client)
 assert result == [11, 21, 31], "Die Daten sollten um 1 erhöht werden."

Erläuterung

Fixture mock_db_client:

Diese Fixture erstellt eine simulierte Version der DatabaseClient-Klasse, die eine Methode
fetch_data() bereitstellt, welche die Beispiel-Daten [10, 20, 30] zurückgibt. Mit
monkeypatch.setattr ersetzen wir die echte DatabaseClient-Klasse in database_module durch
die simulierte MockDatabaseClient-Klasse. Die Fixture gibt eine Instanz von MockDatabaseClient
zurück, die im Test verwendet wird.

Test test_get_processed_data:

Der Test nutzt die Fixture mock_db_client, um get_processed_data zu testen. Da
get_processed_data nun auf die simulierten Daten [10, 20, 30] zugreift, sollte das Ergebnis [11,
21, 31] sein (jedes Element um 1 erhöht). Der Test überprüft dies mit einer assert-Anweisung.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lu04/monkeypatch

Last update: 2024/11/12 07:30

https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu04/monkeypatch

	LU04b - Funktionen und Klassen simulieren
	Isolation der Testobjekte
	Vermeidung externer Abhängigkeiten
	Kontrolle über Rückgabewerte und Fehlerzustände
	Verbesserte Performance
	Funktionen simulieren
	Klassen simulieren
	Erläuterung

