
2026/01/12 00:24 1/4 LU08c – Chai-Assertions in Bruno (BDD & TDD)

BZZ - Modulwiki - https://wiki.bzz.ch/

LU08c – Chai-Assertions in Bruno (BDD &
TDD)

Bruno nutzt die Chai-Bibliothek (↗) – d. h. du kannst
dieselbe Syntax wie in Chai für Assertions in deinen Tests
verwenden. Zusätzlich bietet Bruno neben JS-Tests auch
deklarative Assertions im eigenen Reiter.

Einordnung: Tests in Bruno

Bruno kennt zwei Wege für automatische Prüfungen:

Assertions-Reiter (No-Code/Low-Code): Bedingungen per Ausdruck/Operator/Wert
definieren (z. B. *response.status equals 200*).
Tests (JavaScript): Frei mit Chai formulieren – ideal für komplexe Logik, Schleifen,
dynamische Vergleiche etc.

Typischer Ablauf: Request ausführen → im Reiter Tests oder Assertions die Bedingungen
definieren → erneut ausführen → Bruno zeigt Pass/Fail pro Bedingung.

Chai kurz erklärt

Chai bietet drei Stile für Assertions:

BDD: `expect(…)` und `should` (lesbare, „natürliche“ Sprache)
TDD: `assert(…)` (klassisch, funktionsorientiert)

In Bruno ist `expect` der gebräuchlichste Stil in Beispielen und Doku. `assert` ist ebenso möglich.
`should` existiert in Chai, wird in Bruno jedoch seltener verwendet.

BDD-Stil (empfohlen für API-Spezifikationen)

Lesbarkeit vor Kürze: Gut für „verhaltensorientierte“ Checks (Antwortstatus, Struktur, Werte).

Beispiele Statuscode

test("Status ist 200", () => {
 expect(res.getStatus()).to.equal(200);
});

Last update:
2025/09/18 09:49 modul:m450:learningunits:lu08:chaibruno https://wiki.bzz.ch/modul/m450/learningunits/lu08/chaibruno?rev=1758181772

https://wiki.bzz.ch/ Printed on 2026/01/12 00:24

Body-Struktur (Objekt)

test("Body enthält erwartete Felder", () => {
 const body = res.getBody(); // JSON wird automatisch geparst, falls
Content-Type JSON
 expect(body).to.have.property("title");
 expect(body).to.have.property("author");
});

Array-Länge & Teilmenge

test("Liste enthält genau 3 Bücher", () => {
 const list = res.getBody();
 expect(Array.isArray(list)).to.equal(true);
 expect(list.length).to.equal(3);
});

Deep Equality (Objekte/Arrays)

test("Buch entspricht dem erwarteten Objekt", () => {
 const book = res.getBody();
 expect(book).to.eql({
 title: "The Winds of Winter",
 author: "George R R Martin"
 });
});

Tipp: Für tiefe Vergleiche nutze `eql`/`deep.equal`; für Primitive reicht `equal`.

TDD-Stil (assert)

Kürze vor Lesbarkeit: Prägnant, beliebt in Unit-Tests – auch in Bruno nutzbar, wenn du TDD
gewohnt bist.

Beispiele

test("Status ist 200 (assert)", () => {
 assert.equal(res.getStatus(), 200);
});

test("Body ist Array (assert)", () => {
 const body = res.getBody();
 assert.isArray(body, "Antwort ist kein Array");
 assert.equal(body.length, 3, "Erwartete Länge 3");
});

2026/01/12 00:24 3/4 LU08c – Chai-Assertions in Bruno (BDD & TDD)

BZZ - Modulwiki - https://wiki.bzz.ch/

„should“-Stil (optional)

Der `should`-Stil von Chai existiert, wird in Bruno jedoch nicht aktiv beworben. Wenn du ihn
verwendest, achte darauf, dass er initialisiert ist; in der Praxis empfiehlt sich in Bruno `expect`.

BDD vs. TDD – wann was?

Nutze BDD (`expect`), wenn …

Anforderungen fachlich/lesbar dokumentiert werden sollen (z. B. im Unterricht, Review mit
Nicht-Entwicklern).
du API-Verhalten/Szenarien formulierst („Wenn ich X aufrufe, erwarte ich Y“).
du deklarative Assertions im UI mit wenigen Klicks ergänzen willst (Status, Header,
Teilinhalte).

Nutze TDD (`assert`), wenn …

du aus Unit-Test-Denke kommst und kurze, funktionale Checks bevorzugst.
du sehr präzise Vergleiche und klassische Assertions magst (z. B. `assert.strictEqual`).
du bestehende TDD-Snippets (aus anderen Projekten) nach Bruno überträgst.

Faustregel in Bruno: Für Unterricht & Teams mit gemischter Erfahrung → BDD/`expect` (+
Assertions-Reiter). Für Entwickler-zentrierte, knappe Checks → TDD/`assert`.

Häufige API-Assertions in Bruno (Mini-Rezeptesammlung)

Header prüfen

test("Content-Type ist JSON", () => {
 const ct = res.getHeader("content-type");
 expect(ct).to.contain("application/json");
});

Teilinhalt prüfen

test("Titel ist nicht leer", () => {
 const b = res.getBody();
 expect(b.title).to.be.a("string").and.not.empty;
});

Antwortzeit (einfacher Leistungs-Check)

Last update:
2025/09/18 09:49 modul:m450:learningunits:lu08:chaibruno https://wiki.bzz.ch/modul/m450/learningunits/lu08/chaibruno?rev=1758181772

https://wiki.bzz.ch/ Printed on 2026/01/12 00:24

test("Antwort < 800 ms", () => {
 expect(res.getResponseTime()).to.be.below(800);
});

Typische Stolpersteine

`equal` vs. `eql`: Für komplexe Strukturen (Objekte/Arrays) `eql`/`deep.equal` nutzen, nicht
`equal`.
Kontext „Tests“ vs. „Script“: Chai-Hilfen sind im Tests-Kontext standardmäßig verfügbar;
im Script-Kontext kann es je nach Version abweichen → Tests-Tab verwenden.
Parsing: `res.getBody()` liefert bei JSON-Antworten ein bereits geparstes Objekt (ansonsten
String) – prüfe ggf. Content-Type.

Weiterführende Links

Bruno – Testing (Einführung & Beispiele)

– Assertions & `expect(res.getStatus()).to.equal(200)` u. a.

Bruno – Assertions (No-Code Assertions-Reiter)
Bruno – JavaScript/Response-API (z. B. `res.getBody()`, `getHeader()`)
Chai – Assertion-Stile (BDD `expect`/`should`, TDD `assert`)

M450-LU08

 Marcel Suter (angepasst)

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lu08/chaibruno?rev=1758181772

Last update: 2025/09/18 09:49

https://wiki.bzz.ch/tag/m450-lu08?do=showtag&tag=M450-LU08
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu08/chaibruno?rev=1758181772

	LU08c – Chai-Assertions in Bruno (BDD & TDD)
	Einordnung: Tests in Bruno
	Chai kurz erklärt
	BDD-Stil (empfohlen für API-Spezifikationen)
	TDD-Stil (assert)
	„should“-Stil (optional)
	BDD vs. TDD – wann was?
	Häufige API-Assertions in Bruno (Mini-Rezeptesammlung)
	Typische Stolpersteine
	Weiterführende Links

