
2026/02/12 04:25 1/3 LU11a - Grundlagen

BZZ - Modulwiki - https://wiki.bzz.ch/

LU11a - Grundlagen

Quelle: https://www.browserstack.com/guide/what-is-test-driven-development

Was ist TDD?

Test Driven Development (TDD) ist ein Entwicklungsvorgehen, dass aus der agilen Entwicklung und
dem Extreme programming hervorgegangen ist. TDD ist eine agile Softwareentwicklungsmethode, bei
der Tests vor der eigentlichen Implementierung des Codes geschrieben werden. Das Ziel ist, die
Entwicklung zu strukturieren, Fehler frühzeitig zu erkennen und eine hohe Codequalität zu
gewährleisten.

Dabei werden in einem iterativen Prozess …

… Unit Tests erstellt
… Funktionen/Methoden programmiert
… die Funktionen/Methoden verbessert

bis alle Tests erfolgreich durchgeführt werden.

Grundprinzipien von TDD

Red-Green-Refactor-Zyklus

Red: Schreibe einen Test für die neue Funktionalität. Der Test schlägt fehl (da es noch keine
Implementierung gibt).
Green: Implementiere den minimalen Code, der erforderlich ist, damit der Test besteht.
Refactor: Überarbeite den Code, um ihn zu optimieren und die Qualität zu verbessern, während
alle Tests weiterhin bestehen.

https://www.browserstack.com/guide/what-is-test-driven-development
https://wiki.bzz.ch/lib/exe/fetch.php?tok=1783a2&media=https%3A%2F%2Fmartinfowler.com%2Fbliki%2Fimages%2Ftest-driven-development%2Fcard.png


Last update: 2024/11/15 14:56 modul:m450:learningunits:lu11:grundlagen https://wiki.bzz.ch/modul/m450/learningunits/lu11/grundlagen

https://wiki.bzz.ch/ Printed on 2026/02/12 04:25

Kleine Schritte

Entwickle und teste kleine, isolierte Einheiten von Funktionalität nacheinander. Reduziert die
Komplexität und erleichtert das Debuggen.

Test-First-Ansatz

Tests werden vor der Implementierung geschrieben, um die Anforderungen zu klären und den Fokus
auf das Ziel zu behalten.

Automatisierte Tests

Die Tests sind automatisiert, sodass sie bei jedem Build oder Deployment wiederholt ausgeführt
werden können.

Planung

Natürlich musst du sowohl für das Erstellen der Tests als auch für das Programmieren der
Funktionen/Methoden ein gutes Verständnis der Anforderungen haben. Ergeben sich im Verlauf der
Entwicklung neue Erkenntnisse zu den Anforderungen, so wird der Prozess wiederholt. Die Tests
werden ergänzt oder korrigiert und erneut ausgeführt.

Beispiele

Für einen Taschenrechner benötigen wir eine Funktion add um Zahlen zu addieren. Zunächst
schreiben wir alle relevanten Unit Tests:

Gültige Addition
Fehlende / falsche Zahlen
Extremwerte
…

Anschliessend programmieren wir die Funktion add und führen alle Unit Tests aus. Solange nicht alle
Tests erfolgreich sind, wird die Funktion add überarbeitet.

Unit Tests

Jeder Unit Test beim TDD soll nur einen Aspekt prüfen. Wir wollen möglichst kleine Codestücke testen
und nicht das Zusammenspiel mehrere Codeteile. Bei Bedarf setzen wir Mockups von Funktionen ein,
die nicht Teil des aktuellen Tests sind.

Häufig werden zunächst die Unit Tests für die erfolgreiche Verarbeitung erstellt. Im Verlauf der
Entwicklung werden dann weitere Tests für Fehlersituationen oder Extremwerte ergänzt.



2026/02/12 04:25 3/3 LU11a - Grundlagen

BZZ - Modulwiki - https://wiki.bzz.ch/

M450-LU01

 Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lu11/grundlagen

Last update: 2024/11/15 14:56

https://wiki.bzz.ch/tag/m450-lu01?do=showtag&tag=M450-LU01
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu11/grundlagen

	LU11a - Grundlagen
	Was ist TDD?
	Grundprinzipien von TDD
	Red-Green-Refactor-Zyklus
	Kleine Schritte
	Test-First-Ansatz
	Automatisierte Tests

	Planung
	Beispiele

	Unit Tests


