2026/02/03 07:38 1/3 LU11b - Mock

LU11lb - Mock

als Platzhalter flir die echten Klassen, Methoden oder

i i Als Mock (deutsch: Attrappe) bezeichnen wir Codeteile die
Funktionen agieren.

Bei einem Unit Test wollen wir die Funktionsweise einer einzelnen Funktion testen. Falls diese
Funktion ein Objekt bendtigt oder seinerseits Funktionen/Methoden aufruft, warden diese ungewollt
mitgetestet. Im schlimmsten Fall ist die Klasse oder die Funktion/Methode noch gar nicht realisiert
und meine Tests sind unbrauchbar. Gerade beim Test Driven Development wollen wir bewusst solche
Abhangigkeiten und Schnittstellen zunachst ignorieren. Daher erstellen wir Mocks (Attrappen), welche
das Verhalten simmulieren.

As simple as possible ...

Die Mocks werden so einfach wie nur moglich programmiert (as simple as possible, but no simpler).
Das einzige Ziel ist es, dass mein Unit Test durchfihrbar ist. Je nach Art des Mocks, gibt es
verschiedene Losungen.

Funktion/Methode ohne Returnwert

Wird eine Funktion aufgerufen, die keinen Returnwert hat, reicht der Befehl pass.

set description(description

Funktion/Methode mit Returnwert

In diesem Fall reicht es haufig, den immer gleichen Returnwert zurick zu geben.

get description
'I am a description'’

Objekte

Bendtigt die zu testende Funktion ein Objekt, so mussen wir zumindest die Klasse und den
Konstruktor als Mock erstellen. Wobei auch hier in der Regel keine Logik benétigt wird.

Article:
~init (self, number, description):

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2024/03/28 14:07 modul:m450:learningunits:lull:mock https://wiki.bzz.ch/modul/m450/learningunits/lul1/mock

Pytest und Mocks

Die Bibliothek monkeypatch von Pytest ermdglicht uns, einzelne Funktionen oder Klassen durch
Mocks zu ersetzen. Dies wird in Erganzung zu den den bereits bekannten Fixtures eingesetzt.

Fixture

Eine Funktion mit dem Decorator @fixture dient dazu, Daten und Objekte fur andere Testfunktionen
bereit zu stellen. Dadurch kénnen verschiedene Funktionen die gleichen Daten/Objekte benutzen,
ohne dass ich dies in jeder Testfunktion programmieren muss.

Im folgenden Beispiel habe ich zwei Testfunktionen, die ein Objekt der Klasse Employee bendétigen.
Daher erstelle ich eine @fixture-Funktion, welche das Objekt bereitstellt.

pytest.fixture
employee(self):
Employee('Mia'’ '722.56-8', '099 999 99 99'

test employee initialisation(self, employee):

employee.name 'Mia'
employee.age

employee.pers nr '722.56-8"
employee.phone '099 999 99 99

test set get salary(self, employee):
employee.salary
employee.salary

Siehe auch LUO4a - Fixture

Monkeypatch

Mit Monkeypatch kann ich, fur die Durchfuhrung meines Tests, Funktionen in anderen Modulen
ersetzen.

Angenommen ich mdchte die Funktion main im Modul main. py testen. Ich weiss bereits, dass die
Funktion main eine weitere Funktion login aufruft. Diese Funktion Login will ich aber nicht testen,
also ersetze ich sie durch einen Mock:

main
monkeypatch to replace the function 'login' in main
dummy login
True

https://wiki.bzz.ch/ Printed on 2026/02/03 07:38

https://wiki.bzz.ch/modul/m450/learningunits/lu04/fixture
https://wiki.bzz.ch/modul/m450/learningunits/lu04/fixture

2026/02/03 07:38 3/3 LU11b - Mock

test main(capsys, monkeypatch
monkeypatch.setattr(main, 'login', dummy login
main.main

output capsys.readouterr().out

M450-LUO01

=l Marcel Suter

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lull/mock

Last update: 2024/03/28 14:07

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/tag/m450-lu01?do=showtag&tag=M450-LU01
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu11/mock

	LU11b - Mock
	As simple as possible ...
	Funktion/Methode ohne Returnwert
	Funktion/Methode mit Returnwert
	Objekte

	Pytest und Mocks
	Fixture
	Monkeypatch

