2026/02/02 19:44 1/5 LU16e - Behaviour Driven Development (BDD) in Python

LUl6e - Behaviour Driven Development
(BDD) in Python

Einfuhrung

Behaviour Driven Development (BDD) ist eine Weiterentwicklung von Test Driven
Development (TDD). Beim BDD steht das Verhalten eines Systems aus Sicht der
Benutzer:innen im Zentrum. Tests werden in einer naturlichen Sprache formuliert, die von allen
verstanden wird — nicht nur von Programmierer:innen.

Ein populares Framework fur BDD in Python ist behave. Damit lassen sich lesbare Akzeptanztests
in einer sogenannten Gherkin-Syntax schreiben und mit Python-Code verknupfen.

Ziel von BDD

e Verstandliche Tests schreiben, die auch Fachpersonen lesen kénnen

¢ Anforderungen und Tests in einer gemeinsamen Sprache beschreiben

e Entwicklungsschritte von der Benutzerstory bis zum Test automatisieren
e Fruh Feedback erhalten, ob das System das gewunschte Verhalten zeigt

Ausgangssituation: Eine kleine App

Stell dir vor, du entwickelst eine kleine Applikation, z. B. einen Rechner, der einfache Operationen
(Addition, Subtraktion usw.) ausfihrt. Diese App soll so getestet werden, dass auch nicht-technische
Personen verstehen, was Uberpruft wird.

Das Ziel ist nicht, die App zu programmieren - sondern ihr Verhalten zu beschreiben und zu
testen, wie sie sich aus Sicht der Benutzer:innen verhalten *sollte*.

Aufbau eines Behave-Projekts

Ein Behave-Projekt ist typischerweise so aufgebaut:

project/

— app/ <-- hier liegt der Quellcode der App (z. B.
calculator.py)

— features/ <-- hier liegen die BDD-Tests

| — calculator.feature

BZZ - Modulwiki - https://wiki.bzz.ch/

Last update: 2025/10/23
09:34

| L— steps/
| L— calculator steps.py

modul:m450:learningunits:lul6:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python

o . feature-Dateien enthalten Szenarien in Gherkin-Sprache
e .py-Dateien im Unterordner steps/ enthalten die Python-Schritte dazu
e Das App-Modul (app/calculator.py) ist die getestete Anwendung

Gherkin-Syntax

Gherkin ist eine leicht lesbare Sprache, um das gewinschte Verhalten eines Systems zu beschreiben.
Jede Feature-Datei beschreibt eine Funktionalitat oder Benutzerstory.

Beispiel:

Feature: Einfacher Taschenrechner
Um einfache Rechnungen durchfihren zu koénnen
Mochte ich zwei Zahlen addieren konnen

Scenario: Zwei Zahlen addieren
Given ich habe 50 in die App eingegeben
And ich habe 70 in die App eingegeben
When ich die Additionsfunktion ausfuhre
Then sollte das Ergebnis 120 auf dem Bildschirm erscheinen

Schliisselworter:

e Feature - beschreibt die Funktion / das Ziel
e Scenario - einzelner Testfall

e Given - Ausgangslage (Vorbedingungen)

e When - Aktion (was passiert)

e Then - erwartetes Ergebnis

e And / But - Erweiterungen

Schrittdefinitionen und getestete App

Feature Steps (Testcode) App-Code (getestete Anwendung)
behave given, when # app/calculator.py
then
app.calculator Calculator:
Calculator # zu testende App _init (self):
interner Speicher flr
given('ich habe {zahl:d} in die eingegebene Zahlen
App eingegeben' self.numbers

step input number(context

https://wiki.bzz.ch/ Printed on 2026/02/02 19:44

2026/02/02 19:44 3/5

LU16e - Behaviour Driven Development (BDD) in Python

zahl
Erstellt (falls notig) eine
neue App-Instanz
hasattr(context
"calc"
context.calc Calculator
context.calc.enter number(zahl

when('ich die Additionsfunktion
ausfihre'

step perform add(context

Fuhrt die gewilinschte
Operation aus

context.result
context.calc.add

then('sollte das Ergebnis
{expected:d} auf dem Bildschirm
erscheinen’

step verify result(context
expected

Uberpriift das sichtbare
Resultat der App

context.result

expected

Hinweise:

enter number(self, value):

Zahl zur Eingabeliste
hinzufigen

self.numbers.append(value

add(self):

Beispiel-Implementierung:
summiert alle Werte

result sum(self.numbers

leert Eingaben fur
nachsten Vorgang

self.numbers.clear

result

e Das Modul calculator.py ist die zu testende Applikation, nicht Teil des Tests selbst.
e Die Datei calculator steps.py beschreibt nur das erwartete Verhalten.

e Der context erlaubt den Austausch von Objekten (z. B. der App) zwischen den Schritten.
e Jeder Given/When/Then-Schritt entspricht einem Teil der Benutzerinteraktion.

Tests ausfuhren

Im Terminal:
behave
Ergebnis (Auszug):

Feature: Einfacher Taschenrechner
Scenario: Zwei Zahlen addieren

Given ich habe 50 in die App eingegeben

And ich habe 70 in die App eingegeben

When ich die Additionsfunktion ausfuihre

Then sollte das Ergebnis 120 auf dem Bildschirm erscheinen

BZZ - Modulwiki - https://wiki.bzz.ch/

I(_)giti:pdate: 2025/10/23 modul:m450:learningunits:lul6:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python

1 feature passed, 0 failed

Vorteile von Behave

e Tests sind verstandlich fir Entwickler:innen und Fachpersonen

e Klarer Bezug zu Anforderungen oder Benutzerstories

e Schritte sind wiederverwendbar fir mehrere Szenarien

e Einfach automatisierbar in CI/CD-Pipelines (z. B. GitHub Actions, Jenkins)

Vergleich zu Unit Tests

Aspekt |Unit Test BDD (Behave)

Fokus einzelne Funktion / Methode Verhalten aus Nutzersicht

Sprache |Code (Python) Gherkin (naturliche Sprache)

Zielgruppe|Entwickler:innen Fachpersonen + Entwickler:innen

Beispiel |assert add(2,3)==5 »Given i.ch hzla‘be 2 und 3 eingegeben, When ich addiere, Then
erhalte ich 5

Installation

Installation mit pip:

pip install behave

Typische Fehlerquellen

Schrittdefinition fehlt oder Schreibweise weicht ab
Python-Datei liegt nicht im steps/-Ordner
Context-Variable nicht initialisiert

Feature-Datei hat keine Endung . feature

Weiterfuhrende Links

¢ Offizielle Dokumentation: https://behave.readthedocs.io
¢ Gherkin-Syntax Referenz: https://cucumber.io/docs/gherkin/reference/
 Vergleich zu pytest-bdd: https://pytest-bdd.readthedocs.io

https://wiki.bzz.ch/ Printed on 2026/02/02 19:44

https://behave.readthedocs.io
https://cucumber.io/docs/gherkin/reference/
https://pytest-bdd.readthedocs.io

2026/02/02 19:44 5/5 LU16e - Behaviour Driven Development (BDD) in Python

MXXX-LU1l6e

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python

Last update: 2025/10/23 09:34

BZZ - Modulwiki - https://wiki.bzz.ch/

https://wiki.bzz.ch/tag/mxxx-lu16e?do=showtag&tag=MXXX-LU16e
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python

	LU16e – Behaviour Driven Development (BDD) in Python
	Einführung
	Ziel von BDD
	Ausgangssituation: Eine kleine App
	Aufbau eines Behave-Projekts
	Gherkin-Syntax
	Schrittdefinitionen und getestete App
	Tests ausführen
	Vorteile von Behave
	Vergleich zu Unit Tests
	Installation
	Typische Fehlerquellen
	Weiterführende Links

