2026/02/12 07:14 1/4 LU16e - Behaviour Driven Development (BDD) in Python

Behaviour Driven Development (BDD) mit
Behave

Einfuhrung

Behaviour Driven Development (BDD) ist eine Weiterentwicklung von Test Driven
Development (TDD). Beim BDD steht das Verhalten eines Systems aus Sicht der
Benutzer:innen im Zentrum. Tests werden in einer naturlichen Sprache formuliert, die von allen
verstanden wird — nicht nur von Programmierer:innen.

Ein populares Framework fur BDD in Python ist behave. Damit lassen sich lesbare Akzeptanztests
in einer sogenannten Gherkin-Syntax schreiben und mit Python-Code verknupfen.

Ziel von BDD

e Verstandliche Tests schreiben, die auch Fachpersonen lesen kénnen

¢ Anforderungen und Tests in einer gemeinsamen Sprache beschreiben

e Entwicklungsschritte von der Benutzerstory bis zum Test automatisieren
e Fruh Feedback erhalten, ob das System das gewunschte Verhalten zeigt

Aufbau eines Behave-Projekts

Ein Behave-Projekt besteht aus folgenden Ordnern und Dateien:
project/ — features/ | — calculator.feature | L— steps/ | L— calculator_steps.py
perl Code kopieren

o .feature-Dateien enthalten Szenarien in Gherkin-Sprache
e .py-Dateien im Unterordner steps/ enthalten die Python-Schritte dazu

Gherkin-Syntax

Gherkin ist eine einfache Sprache, um Verhalten zu beschreiben. Jede Datei beschreibt ein Feature
(eine Funktion oder Benutzerstory).

Beispiel:

" “gherkin Feature: Einfacher Taschenrechner

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/10/23
08:09

modul:m450:learningunits:lul6:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python?rev=1761199784

Um einfache Rechnungen zu machen
Mochte ich zwei Zahlen addieren konnen

Scenario: Zwei Zahlen addieren
Given ich habe 50 in den Rechner eingegeben
And ich habe 70 in den Rechner eingegeben
When ich drucke addieren
Then sollte das Ergebnis 120 auf dem Bildschirm stehen

Schlusselworter:

Feature - beschreibt die Funktion / das Ziel
Scenario - einzelner Testfall

Given - Ausgangslage (Vorbedingungen)
When - Aktion (was passiert)

Then - erwartetes Ergebnis

And / But - Erweiterungen

Schrittdefinitionen (Step Definitions)

Jeder Schritt im Feature wird mit einer Python-Funktion verknupft.
python Code kopieren from behave import given, when, then

@given('ich habe {zahl:d} in den Rechner eingegeben’') def step_eingabe(context, zahl):
if not hasattr(context, "zahlen"):
context.zahlen = []
context.zahlen.append(zahl)
@when('ich driucke addieren’) def step_add(context):

context.resultat = sum(context.zahlen)

@then('sollte das Ergebnis {erwartet:d} auf dem Bildschirm stehen') def step_pruefen(context,
erwartet):

assert context.resultat == erwartet
Wichtig:

Der context ist ein gemeinsames Objekt fur alle Schritte eines Szenarios

https://wiki.bzz.ch/ Printed on 2026/02/12 07:14

2026/02/12 07:14 3/4 LU16e - Behaviour Driven Development (BDD) in Python

Parameter in geschweiften Klammern {zahl:d} werden automatisch geparst (z. B. als int)

Tests ausfuhren

Im Terminal im Projektordner:
nginx Code kopieren behave Ergebnis:

vbnet Code kopieren Feature: Einfacher Taschenrechner

Scenario: Zwei Zahlen addieren
Given ich habe 50 in den Rechner eingegeben
And ich habe 70 in den Rechner eingegeben
When ich drucke addieren
Then sollte das Ergebnis 120 auf dem Bildschirm stehen

1 feature passed, 0 failed

Vorteile von Behave

Tests sind leicht lesbar fur alle Beteiligten
Klarer Bezug zu Anforderungen / User Stories
Wiederverwendbare Schritte in Python

Automatisierbar in Cl/CD-Pipelines (z. B. GitHub Actions, Jenkins)

Vergleich zu Unit Tests

Aspekt Unit Test BDD (Behave) Fokus einzelne Funktion / Klasse Verhalten aus Nutzersicht Sprache
Code (Python) Gherkin (naturliche Sprache) Zielgruppe Entwickler:innen Fachpersonen +
Entwickler:innen Beispiel assert add(2,3)==>5 ,Given ich habe 2 und 3, When ich addiere, Then
erhalte ich 5“

Installation

Installation mit pip:

nginx Code kopieren pip install behave

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/10/23
08:09

modul:m450:learningunits:lul6:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python?rev=1761199784

Typische Fehlerquellen

Schrittdefinition fehlt oder Schreibweise weicht ab
Python-Datei liegt nicht im steps/-Ordner
Context-Variable nicht initialisiert

Feature-Datei hat keine Endung . feature

Weiterfuhrende Links

Offizielle Dokumentation: https://behave.readthedocs.io
Gherkin-Syntax Referenz: https://cucumber.io/docs/gherkin/reference/

Vergleich zu pytest-bdd: https://pytest-bdd.readthedocs.io

Aufgabe (optional)

Erstelle ein eigenes Feature:

Erstelle eine Datei temperature.feature

Beschreibe ein Verhalten zum Umrechnen von Celsius in Fahrenheit
Implementiere die Schrittdefinitionen in Python

Fuhre die Tests mit behave aus

yaml Code kopieren

Mdchtest du, dass ich daraus gleich noch eine zweite DokuWiki-Seite fur pytest-bdd (Alternative
mit pytest) erstelle, damit du sie als Vergleich oder Erganzung in deinem Unterricht einsetzen kannst?

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

Ef?‘ F T
https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python?rev=1761199784 ;. '%l,‘-'lﬂ-
5 3

| u r

Last update: 2025/10/23 08:09

&

https://wiki.bzz.ch/

Printed on 2026/02/12 07:14

https://behave.readthedocs.io
https://cucumber.io/docs/gherkin/reference/
https://pytest-bdd.readthedocs.io
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761199784

	Behaviour Driven Development (BDD) mit Behave
	Einführung
	Ziel von BDD
	Aufbau eines Behave-Projekts
	Gherkin-Syntax
	Schrittdefinitionen (Step Definitions)
	Tests ausführen
	Vorteile von Behave
	Vergleich zu Unit Tests
	Installation
	Typische Fehlerquellen
	Weiterführende Links
	Aufgabe (optional)

