
2026/02/12 07:14 1/4 LU16e – Behaviour Driven Development (BDD) in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

Behaviour Driven Development (BDD) mit
Behave

Einführung

Behaviour Driven Development (BDD) ist eine Weiterentwicklung von Test Driven
Development (TDD). Beim BDD steht das Verhalten eines Systems aus Sicht der
Benutzer:innen im Zentrum. Tests werden in einer natürlichen Sprache formuliert, die von allen
verstanden wird — nicht nur von Programmierer:innen.

Ein populäres Framework für BDD in Python ist behave. Damit lassen sich lesbare Akzeptanztests
in einer sogenannten Gherkin-Syntax schreiben und mit Python-Code verknüpfen.

Ziel von BDD

Verständliche Tests schreiben, die auch Fachpersonen lesen können
Anforderungen und Tests in einer gemeinsamen Sprache beschreiben
Entwicklungsschritte von der Benutzerstory bis zum Test automatisieren
Früh Feedback erhalten, ob das System das gewünschte Verhalten zeigt

Aufbau eines Behave-Projekts

Ein Behave-Projekt besteht aus folgenden Ordnern und Dateien: ' project/ ├── features/ │
├── calculator.feature │ └── steps/ │ └── calculator_steps.py ' perl Code
kopieren

.feature-Dateien enthalten Szenarien in Gherkin-Sprache

.py-Dateien im Unterordner steps/ enthalten die Python-Schritte dazu

Gherkin-Syntax

Gherkin ist eine einfache Sprache, um Verhalten zu beschreiben. Jede Datei beschreibt ein Feature
(eine Funktion oder Benutzerstory).

Beispiel:

```gherkin Feature: Einfacher Taschenrechner

Um einfache Rechnungen zu machen



Last
update:
2025/10/23
08:10

modul:m450:learningunits:lu16:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761199818

https://wiki.bzz.ch/ Printed on 2026/02/12 07:14

Möchte ich zwei Zahlen addieren können

Scenario: Zwei Zahlen addieren
  Given ich habe 50 in den Rechner eingegeben
  And ich habe 70 in den Rechner eingegeben
  When ich drücke addieren
  Then sollte das Ergebnis 120 auf dem Bildschirm stehen

Schlüsselwörter:

Feature → beschreibt die Funktion / das Ziel

Scenario → einzelner Testfall

Given → Ausgangslage (Vorbedingungen)

When → Aktion (was passiert)

Then → erwartetes Ergebnis

And / But → Erweiterungen

Schrittdefinitionen (Step Definitions)

Jeder Schritt im Feature wird mit einer Python-Funktion verknüpft.

python Code kopieren from behave import given, when, then

@given('ich habe {zahl:d} in den Rechner eingegeben') def step_eingabe(context, zahl):

  if not hasattr(context, "zahlen"):
      context.zahlen = []
  context.zahlen.append(zahl)

@when('ich drücke addieren') def step_add(context):

  context.resultat = sum(context.zahlen)

@then('sollte das Ergebnis {erwartet:d} auf dem Bildschirm stehen') def step_pruefen(context,
erwartet):

  assert context.resultat == erwartet

Wichtig:

Der context ist ein gemeinsames Objekt für alle Schritte eines Szenarios

Parameter in geschweiften Klammern {zahl:d} werden automatisch geparst (z. B. als int)



2026/02/12 07:14 3/4 LU16e – Behaviour Driven Development (BDD) in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

Tests ausführen

Im Terminal im Projektordner:

nginx Code kopieren behave Ergebnis:

vbnet Code kopieren Feature: Einfacher Taschenrechner

Scenario: Zwei Zahlen addieren
  Given ich habe 50 in den Rechner eingegeben
  And ich habe 70 in den Rechner eingegeben
  When ich drücke addieren
  Then sollte das Ergebnis 120 auf dem Bildschirm stehen

1 feature passed, 0 failed

Vorteile von Behave

Tests sind leicht lesbar für alle Beteiligten

Klarer Bezug zu Anforderungen / User Stories

Wiederverwendbare Schritte in Python

Automatisierbar in CI/CD-Pipelines (z. B. GitHub Actions, Jenkins)

Vergleich zu Unit Tests

Aspekt Unit Test BDD (Behave) Fokus einzelne Funktion / Klasse Verhalten aus Nutzersicht Sprache
Code (Python) Gherkin (natürliche Sprache) Zielgruppe Entwickler:innen Fachpersonen +
Entwickler:innen Beispiel assert add(2,3)==5 „Given ich habe 2 und 3, When ich addiere, Then
erhalte ich 5“

Installation

Installation mit pip:

nginx Code kopieren pip install behave

Typische Fehlerquellen

Schrittdefinition fehlt oder Schreibweise weicht ab



Last
update:
2025/10/23
08:10

modul:m450:learningunits:lu16:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761199818

https://wiki.bzz.ch/ Printed on 2026/02/12 07:14

Python-Datei liegt nicht im steps/-Ordner

Context-Variable nicht initialisiert

Feature-Datei hat keine Endung .feature

Weiterführende Links

Offizielle Dokumentation: https://behave.readthedocs.io

Gherkin-Syntax Referenz: https://cucumber.io/docs/gherkin/reference/

Vergleich zu pytest-bdd: https://pytest-bdd.readthedocs.io

Aufgabe (optional)

Erstelle ein eigenes Feature:

Erstelle eine Datei temperature.feature

Beschreibe ein Verhalten zum Umrechnen von Celsius in Fahrenheit

Implementiere die Schrittdefinitionen in Python

Führe die Tests mit behave aus

yaml Code kopieren

—

Möchtest du, dass ich daraus gleich noch eine zweite DokuWiki-Seite für pytest-bdd (Alternative
mit pytest) erstelle, damit du sie als Vergleich oder Ergänzung in deinem Unterricht einsetzen kannst?

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761199818

Last update: 2025/10/23 08:10

https://behave.readthedocs.io
https://cucumber.io/docs/gherkin/reference/
https://pytest-bdd.readthedocs.io
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761199818

	Behaviour Driven Development (BDD) mit Behave
	Einführung
	Ziel von BDD
	Aufbau eines Behave-Projekts
	Gherkin-Syntax
	Schrittdefinitionen (Step Definitions)
	Tests ausführen
	Vorteile von Behave
	Vergleich zu Unit Tests
	Installation
	Typische Fehlerquellen
	Weiterführende Links
	Aufgabe (optional)


