2026/02/12 08:29 1/4 LU16e - Behaviour Driven Development (BDD) in Python

Behaviour Driven Development (BDD) mit
Behave

Einfuhrung

Behaviour Driven Development (BDD) ist eine Weiterentwicklung von Test Driven
Development (TDD). Beim BDD steht das Verhalten eines Systems aus Sicht der
Benutzer:innen im Zentrum. Tests werden in einer naturlichen Sprache formuliert, die von allen
verstanden wird — nicht nur von Programmierer:innen.

Ein populares Framework fur BDD in Python ist behave. Damit lassen sich lesbare Akzeptanztests
in einer sogenannten Gherkin-Syntax schreiben und mit Python-Code verknupfen.

Ziel von BDD

* Verstandliche Tests schreiben, die auch Fachpersonen lesen kdnnen * Anforderungen und Tests in
einer gemeinsamen Sprache beschreiben * Entwicklungsschritte von der Benutzerstory bis zum Test
automatisieren * Frih Feedback erhalten, ob das System das gewlnschte Verhalten zeigt

Aufbau eines Behave-Projekts

Ein Behave-Projekt besteht aus folgenden Ordnern und Dateien:
** project/ — features/ | |— calculator.feature | L— steps/ | L— calculator _steps.py ***

* . feature-Dateien enthalten Szenarien in Gherkin-Sprache * . py-Dateien im Unterordner
steps/ enthalten die Python-Schritte dazu

Gherkin-Syntax

Gherkin ist eine einfache Sprache, um Verhalten zu beschreiben. Jede Datei beschreibt ein Feature
(eine Funktion oder Benutzerstory).

Beispiel:

" “gherkin Feature: Einfacher Taschenrechner

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/10/23
08:12

modul:m450:learningunits:lul6:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python?rev=1761199925

Um einfache Rechnungen zu machen
Mochte ich zwei Zahlen addieren konnen

Scenario: Zwei Zahlen addieren
Given ich habe 50 in den Rechner eingegeben
And ich habe 70 in den Rechner eingegeben
When ich drucke addieren
Then sollte das Ergebnis 120 auf dem Bildschirm stehen

Schlisselworter:

* Feature - beschreibt die Funktion / das Ziel * Scenario - einzelner Testfall * Given -
Ausgangslage (Vorbedingungen) * When - Aktion (was passiert) * Then - erwartetes Ergebnis * And /
But - Erweiterungen

Schrittdefinitionen (Step Definitions)

Jeder Schritt im Feature wird mit einer Python-Funktion verknupft.
" python from behave import given, when, then

@given('ich habe {zahl:d} in den Rechner eingegeben') def step_eingabe(context, zahl):
if not hasattr(context, "zahlen"):
context.zahlen = []
context.zahlen.append(zahl)
@when('ich dricke addieren') def step_add(context):

context.resultat = sum(context.zahlen)

@then('sollte das Ergebnis {erwartet:d} auf dem Bildschirm stehen') def step_pruefen(context,
erwartet):

assert context.resultat == erwartet

Wichtig:

* Der context ist ein gemeinsames Objekt fur alle Schritte eines Szenarios * Parameter in
geschweiften Klammern {zahl:d} werden automatisch geparst (z. B. als int)

https://wiki.bzz.ch/ Printed on 2026/02/12 08:29

2026/02/12 08:29 3/4 LU16e - Behaviour Driven Development (BDD) in Python

Tests ausfuhren

Im Terminal im Projektordner:
" behave "
Ergebnis:

""" Feature: Einfacher Taschenrechner

Scenario: Zweli Zahlen addieren
Given ich habe 50 in den Rechner eingegeben
And ich habe 70 in den Rechner eingegeben
When ich dricke addieren
Then sollte das Ergebnis 120 auf dem Bildschirm stehen

1 feature passed, 0 failed " *°

Vorteile von Behave

* Tests sind leicht lesbar fur alle Beteiligten * Klarer Bezug zu Anforderungen / User Stories *
Wiederverwendbare Schritte in Python * Automatisierbar in CI/CD-Pipelines (z. B. GitHub
Actions, Jenkins)

Vergleich zu Unit Tests

Aspekt Unit Test BDD (Behave)

Fokus einzelne Funktion / Klasse|Verhalten aus Nutzersicht

Sprache |Code (Python) Gherkin (naturliche Sprache)

Zielgruppe|Entwickler:innen Fachpersonen + Entwickler:innen

Beispiel | assert add(2,3)==5" »Given ich habe 2 und 3, When ich addiere, Then erhalte ich 5“
Installation

Installation mit pip:

" pip install behave "

BZZ - Modulwiki - https://wiki.bzz.ch/

Last
update:
2025/10/23
08:12

modul:m450:learningunits:lul6:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python?rev=1761199925

Typische Fehlerquellen

* Schrittdefinition fehlt oder Schreibweise weicht ab * Python-Datei liegt nicht im steps/-Ordner *
Context-Variable nicht initialisiert * Feature-Datei hat keine Endung . feature

Weiterfuhrende Links

* Offizielle Dokumentation: https://behave.readthedocs.io * Gherkin-
Syntax Referenz:
https://cucumber.io/docs/gherkin/reference/ * Vergleich
zu pytest-bdd: https://pytest-bdd.readthedocs.io

Aufgabe (optional)

Erstelle ein eigenes Feature:

1. Erstelle eine Datei temperature. feature 2. Beschreibe ein Verhalten zum Umrechnen von
Celsius in Fahrenheit 3. Implementiere die Schrittdefinitionen in Python 4. Fuhre die Tests mit behave
aus

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: :
https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python?rev=1761199925 ,.7;a!

Last update: 2025/10/23 08:12

https://wiki.bzz.ch/ Printed on 2026/02/12 08:29

https://behave.readthedocs.io]
https://behave.readthedocs.io
https://cucumber.io/docs/gherkin/reference/]
https://cucumber.io/docs/gherkin/reference/
https://pytest-bdd.readthedocs.io]
https://pytest-bdd.readthedocs.io
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761199925

	Behaviour Driven Development (BDD) mit Behave
	Einführung
	Ziel von BDD
	Aufbau eines Behave-Projekts
	Gherkin-Syntax
	Schrittdefinitionen (Step Definitions)
	Tests ausführen
	Vorteile von Behave
	Vergleich zu Unit Tests
	Installation
	Typische Fehlerquellen
	Weiterführende Links
	Aufgabe (optional)

