
2026/02/12 07:15 1/4 LU16e – Behaviour Driven Development (BDD) in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

Behaviour Driven Development (BDD) mit
Behave

Einführung

Behaviour Driven Development (BDD) ist eine Weiterentwicklung von Test Driven
Development (TDD). Beim BDD steht das Verhalten eines Systems aus Sicht der
Benutzer:innen im Zentrum. Tests werden in einer natürlichen Sprache formuliert, die von allen
verstanden wird — nicht nur von Programmierer:innen.

Ein populäres Framework für BDD in Python ist behave. Damit lassen sich lesbare Akzeptanztests
in einer sogenannten Gherkin-Syntax schreiben und mit Python-Code verknüpfen.

Ziel von BDD

Verständliche Tests schreiben, die auch Fachpersonen lesen können
Anforderungen und Tests in einer gemeinsamen Sprache beschreiben
Entwicklungsschritte von der Benutzerstory bis zum Test automatisieren
Früh Feedback erhalten, ob das System das gewünschte Verhalten zeigt

Aufbau eines Behave-Projekts

Ein Behave-Projekt besteht aus folgenden Ordnern und Dateien:

``` project/

├── features/

│ ├── calculator.feature

│ └── steps/

│ └── calculator_steps.py

```

.feature-Dateien enthalten Szenarien in Gherkin-Sprache

.py-Dateien im Unterordner steps/ enthalten die Python-Schritte dazu

Last
update:
2025/10/23
08:13

modul:m450:learningunits:lu16:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761200036

https://wiki.bzz.ch/ Printed on 2026/02/12 07:15

Gherkin-Syntax

Gherkin ist eine einfache Sprache, um Verhalten zu beschreiben. Jede Datei beschreibt ein Feature
(eine Funktion oder Benutzerstory).

Beispiel:

```gherkin Feature: Einfacher Taschenrechner

Um einfache Rechnungen zu machen
Möchte ich zwei Zahlen addieren können

Scenario: Zwei Zahlen addieren
  Given ich habe 50 in den Rechner eingegeben
  And ich habe 70 in den Rechner eingegeben
  When ich drücke addieren
  Then sollte das Ergebnis 120 auf dem Bildschirm stehen

```

Schlüsselwörter:

Feature → beschreibt die Funktion / das Ziel
Scenario → einzelner Testfall
Given → Ausgangslage (Vorbedingungen)
When → Aktion (was passiert)
Then → erwartetes Ergebnis
And / But → Erweiterungen

Schrittdefinitionen (Step Definitions)

Jeder Schritt im Feature wird mit einer Python-Funktion verknüpft.

```python from behave import given, when, then

@given('ich habe {zahl:d} in den Rechner eingegeben') def step_eingabe(context, zahl):

  if not hasattr(context, "zahlen"):
      context.zahlen = []
  context.zahlen.append(zahl)

@when('ich drücke addieren') def step_add(context):

  context.resultat = sum(context.zahlen)



2026/02/12 07:15 3/4 LU16e – Behaviour Driven Development (BDD) in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

@then('sollte das Ergebnis {erwartet:d} auf dem Bildschirm stehen') def step_pruefen(context,
erwartet):

  assert context.resultat == erwartet

```

Wichtig:

Der context ist ein gemeinsames Objekt für alle Schritte eines Szenarios
Parameter in geschweiften Klammern {zahl:d} werden automatisch geparst (z. B. als int)

Tests ausführen

Im Terminal im Projektordner:

' behave '

Ergebnis:

' Feature: Einfacher Taschenrechner Scenario: Zwei Zahlen addieren Given ich
habe 50 in den Rechner eingegeben And ich habe 70 in den Rechner eingegeben
When ich drücke addieren Then sollte das Ergebnis 120 auf dem Bildschirm
stehen 1 feature passed, 0 failed '

Vorteile von Behave

Tests sind leicht lesbar für alle Beteiligten
Klarer Bezug zu Anforderungen / User Stories
Wiederverwendbare Schritte in Python
Automatisierbar in CI/CD-Pipelines (z. B. GitHub Actions, Jenkins)

Vergleich zu Unit Tests
Aspekt Unit Test BDD (Behave)
——— ———— ————–
Fokus einzelne Funktion / Klasse Verhalten aus Nutzersicht
Sprache Code (Python) Gherkin (natürliche Sprache)
Zielgruppe Entwickler:innen Fachpersonen + Entwickler:innen
Beispiel `assert add(2,3)==5` „Given ich habe 2 und 3, When ich addiere, Then erhalte ich 5“

Last
update:
2025/10/23
08:13

modul:m450:learningunits:lu16:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761200036

https://wiki.bzz.ch/ Printed on 2026/02/12 07:15

Installation

Installation mit pip:

``` pip install behave ```

Typische Fehlerquellen

Schrittdefinition fehlt oder Schreibweise weicht ab
Python-Datei liegt nicht im steps/-Ordner
Context-Variable nicht initialisiert
Feature-Datei hat keine Endung .feature

Weiterführende Links

Offizielle Dokumentation: https://behave.readthedocs.io
Gherkin-Syntax Referenz: https://cucumber.io/docs/gherkin/reference/
Vergleich zu pytest-bdd: https://pytest-bdd.readthedocs.io

Aufgabe (optional)

Erstelle ein eigenes Feature:

1. Erstelle eine Datei ''temperature.feature''
2. Beschreibe ein Verhalten zum Umrechnen von Celsius in Fahrenheit
3. Implementiere die Schrittdefinitionen in Python
4. Führe die Tests mit ''behave'' aus

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761200036

Last update: 2025/10/23 08:13

https://behave.readthedocs.io
https://cucumber.io/docs/gherkin/reference/
https://pytest-bdd.readthedocs.io
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761200036

	Behaviour Driven Development (BDD) mit Behave
	Einführung
	Ziel von BDD
	Aufbau eines Behave-Projekts
	Gherkin-Syntax
	Schrittdefinitionen (Step Definitions)
	Tests ausführen
	Vorteile von Behave
	Vergleich zu Unit Tests
	Installation
	Typische Fehlerquellen
	Weiterführende Links
	Aufgabe (optional)


