2026/02/12 07:14 1/5 LU16e - Behaviour Driven Development (BDD) in Python

LUl6e - Behaviour Driven Development
(BDD) in Python

Einfuhrung

Behaviour Driven Development (BDD) ist eine Weiterentwicklung von Test Driven
Development (TDD). Beim BDD steht das Verhalten eines Systems aus Sicht der
Benutzer:innen im Zentrum. Tests werden in einer naturlichen Sprache formuliert, die von allen
verstanden wird — nicht nur von Programmierer:innen.

Ein populares Framework fur BDD in Python ist behave. Damit lassen sich lesbare Akzeptanztests
in einer sogenannten Gherkin-Syntax schreiben und mit Python-Code verknupfen.

Ziel von BDD

e Verstandliche Tests schreiben, die auch Fachpersonen lesen kénnen

¢ Anforderungen und Tests in einer gemeinsamen Sprache beschreiben

e Entwicklungsschritte von der Benutzerstory bis zum Test automatisieren
e Fruh Feedback erhalten, ob das System das gewunschte Verhalten zeigt

Ausgangssituation: Eine kleine App

Stell dir vor, du entwickelst eine kleine Applikation, z. B. einen Rechner, der einfache Operationen
(Addition, Subtraktion usw.) ausfihrt. Diese App soll so getestet werden, dass auch nicht-technische
Personen verstehen, was Uberpruft wird.

Das Ziel ist nicht, die App zu programmieren - sondern ihr Verhalten zu beschreiben und zu
testen, wie sie sich aus Sicht der Benutzer:innen verhalten *sollte*.

Aufbau eines Behave-Projekts

Ein Behave-Projekt ist typischerweise so aufgebaut:

project/

— app/ <-- hier liegt der Quellcode der App (z. B.
calculator.py)

— features/ <-- hier liegen die BDD-Tests

| — calculator.feature

BZZ - Modulwiki - https://wiki.bzz.ch/



Last

;82?;?6/23 modul:m450:learningunits:lul6:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python?rev=1761203644

09:14

| L— steps/
| L— calculator_steps.py

o . feature-Dateien enthalten Szenarien in Gherkin-Sprache
e .py-Dateien im Unterordner steps/ enthalten die Python-Schritte dazu
e Das App-Modul (app/calculator. py) ist die getestete Anwendung

Gherkin-Syntax

Gherkin ist eine leicht lesbare Sprache, um das gewinschte Verhalten eines Systems zu beschreiben.
Jede Feature-Datei beschreibt eine Funktionalitat oder Benutzerstory.

Beispiel:

Feature: Einfacher Taschenrechner
Um einfache Rechnungen durchfihren zu kdénnen
Mochte ich zwei Zahlen addieren konnen

Scenario: Zwei Zahlen addieren
Given ich habe 50 in die App eingegeben
And ich habe 70 in die App eingegeben
When ich die Additionsfunktion ausfuihre
Then sollte das Ergebnis 120 auf dem Bildschirm erscheinen

Schliusselworter:

e Feature - beschreibt die Funktion / das Ziel
e Scenario - einzelner Testfall

e Given - Ausgangslage (Vorbedingungen)

e When - Aktion (was passiert)

e Then - erwartetes Ergebnis

e And / But - Erweiterungen

Schrittdefinitionen (Step Definitions)

FUr jeden Schritt im Feature wird eine Python-Funktion erstellt, die das Verhalten des Systems
simuliert oder pruft.

behave given, when, then
app.calculator Calculator # Beispiel-App, die getestet wird

given('ich habe {zahl:d} in die App eingegeben'
step input number(context, zahl
# Zugriff auf die getestete App uber den context

https://wiki.bzz.ch/ Printed on 2026/02/12 07:14



2026/02/12 07:14 3/5 LU16e - Behaviour Driven Development (BDD) in Python

hasattr(context, "calc"
context.calc Calculator
context.calc.enter number(zahl

when('ich die Additionsfunktion ausfihre'
step perform add(context
context.result context.calc.add

then('sollte das Ergebnis {expected:d} auf dem Bildschirm erscheinen'
step verify result(context, expected
context.result expected

Hinweise:

¢ Das eigentliche Programm (z. B. Calculator) ist nicht Teil des Tests, sondern die
getestete App.

e Die Tests beschreiben nur das Verhalten aus Benutzersicht.

e Der context verbindet die Szenarien mit der App und speichert Daten zwischen Schritten.

Tests ausfuhren

Im Terminal:
behave
Ergebnis (Auszug):

Feature: Einfacher Taschenrechner
Scenario: Zwei Zahlen addieren
Given ich habe 50 in die App eingegeben
And ich habe 70 in die App eingegeben
When ich die Additionsfunktion ausfihre
Then sollte das Ergebnis 120 auf dem Bildschirm erscheinen

1 feature passed, 0 failed

Vorteile von Behave

e Tests sind verstandlich fir Entwickler:innen und Fachpersonen

e Klarer Bezug zu Anforderungen oder Benutzerstories

e Schritte sind wiederverwendbar fur mehrere Szenarien

e Einfach automatisierbar in CI/CD-Pipelines (z. B. GitHub Actions, Jenkins)

BZZ - Modulwiki - https://wiki.bzz.ch/



Last
update:
2025/10/23
09:14

Vergleich zu Unit Tests

modul:m450:learningunits:lul6:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python?rev=1761203644

Aspekt |Unit Test BDD (Behave)

Fokus einzelne Funktion / Methode|Verhalten aus Nutzersicht

Sprache |Code (Python) Gherkin (naturliche Sprache)

Zielgruppe|Entwickler:innen Fachpersonen + Entwickler:innen

Beispiel |'assert add(2,3)==5" »Given i_ch hzibe 2 und 3 eingegeben, When ich addiere, Then
erhalte ich 5

Installation

Installation mit pip:

pip install behave

Typische Fehlerquellen

¢ Schrittdefinition fehlt oder Schreibweise weicht ab
e Python-Datei liegt nicht im steps/-Ordner

e Context-Variable nicht initialisiert

e Feature-Datei hat keine Endung . feature

Weiterfuhrende Links

« Offizielle Dokumentation: https://behave.readthedocs.io
» Gherkin-Syntax Referenz: https://cucumber.io/docs/gherkin/reference/
e Vergleich zu pytest-bdd: https://pytest-bdd.readthedocs.io

MXXX-LUl6e

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link: .
https://wiki.bzz.ch/modul/m450/learningunits/lul6/behant_python?rev=1761203644

Last update: 2025/10/23 09:14

https://wiki.bzz.ch/ Printed on 2026/02/12 07:14


https://behave.readthedocs.io
https://cucumber.io/docs/gherkin/reference/
https://pytest-bdd.readthedocs.io
https://wiki.bzz.ch/tag/mxxx-lu16e?do=showtag&tag=MXXX-LU16e
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761203644

2026/02/12 07:14 5/5 LU16e - Behaviour Driven Development (BDD) in Python

BZZ - Modulwiki - https://wiki.bzz.ch/



	LU16e – Behaviour Driven Development (BDD) in Python
	Einführung
	Ziel von BDD
	Ausgangssituation: Eine kleine App
	Aufbau eines Behave-Projekts
	Gherkin-Syntax
	Schrittdefinitionen (Step Definitions)
	Tests ausführen
	Vorteile von Behave
	Vergleich zu Unit Tests
	Installation
	Typische Fehlerquellen
	Weiterführende Links


