
2026/02/12 07:15 1/5 LU16e – Behaviour Driven Development (BDD) in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

LU16e – Behaviour Driven Development
(BDD) in Python

Einführung

Behaviour Driven Development (BDD) ist eine Weiterentwicklung von Test Driven
Development (TDD). Beim BDD steht das Verhalten eines Systems aus Sicht der
Benutzer:innen im Zentrum. Tests werden in einer natürlichen Sprache formuliert, die von allen
verstanden wird — nicht nur von Programmierer:innen.

Ein populäres Framework für BDD in Python ist behave. Damit lassen sich lesbare Akzeptanztests
in einer sogenannten Gherkin-Syntax schreiben und mit Python-Code verknüpfen.

Ziel von BDD

Verständliche Tests schreiben, die auch Fachpersonen lesen können
Anforderungen und Tests in einer gemeinsamen Sprache beschreiben
Entwicklungsschritte von der Benutzerstory bis zum Test automatisieren
Früh Feedback erhalten, ob das System das gewünschte Verhalten zeigt

Ausgangssituation: Eine kleine App

Stell dir vor, du entwickelst eine kleine Applikation, z. B. einen Rechner, der einfache Operationen
(Addition, Subtraktion usw.) ausführt. Diese App soll so getestet werden, dass auch nicht-technische
Personen verstehen, was überprüft wird.

Das Ziel ist nicht, die App zu programmieren – sondern ihr Verhalten zu beschreiben und zu
testen, wie sie sich aus Sicht der Benutzer:innen verhalten *sollte*.

Aufbau eines Behave-Projekts

Ein Behave-Projekt ist typischerweise so aufgebaut:

project/
 ├── app/ <-- hier liegt der Quellcode der App (z. B.
calculator.py)
 ├── features/ <-- hier liegen die BDD-Tests
 │ ├── calculator.feature

Last
update:
2025/10/23
09:16

modul:m450:learningunits:lu16:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761203765

https://wiki.bzz.ch/ Printed on 2026/02/12 07:15

 │ └── steps/
 │ └── calculator_steps.py

.feature-Dateien enthalten Szenarien in Gherkin-Sprache

.py-Dateien im Unterordner steps/ enthalten die Python-Schritte dazu
Das App-Modul (app/calculator.py) ist die getestete Anwendung

Gherkin-Syntax

Gherkin ist eine leicht lesbare Sprache, um das gewünschte Verhalten eines Systems zu beschreiben.
Jede Feature-Datei beschreibt eine Funktionalität oder Benutzerstory.

Beispiel:

Feature: Einfacher Taschenrechner
 Um einfache Rechnungen durchführen zu können
 Möchte ich zwei Zahlen addieren können

 Scenario: Zwei Zahlen addieren
 Given ich habe 50 in die App eingegeben
 And ich habe 70 in die App eingegeben
 When ich die Additionsfunktion ausführe
 Then sollte das Ergebnis 120 auf dem Bildschirm erscheinen

Schlüsselwörter:

Feature → beschreibt die Funktion / das Ziel
Scenario → einzelner Testfall
Given → Ausgangslage (Vorbedingungen)
When → Aktion (was passiert)
Then → erwartetes Ergebnis
And / But → Erweiterungen

Schrittdefinitionen und getestete App

Feature Steps (Testcode)

from behave import given, when,
then
from app.calculator import
Calculator # zu testende App

@given('ich habe {zahl:d} in die
App eingegeben')

App-Code (getestete Anwendung)

app/calculator.py

class Calculator:
 def __init__(self):
 # interner Speicher für
eingegebene Zahlen
 self.numbers = []

2026/02/12 07:15 3/5 LU16e – Behaviour Driven Development (BDD) in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

def step_input_number(context,
zahl):
 # Erstellt (falls nötig) eine
neue App-Instanz
 if not hasattr(context,
"calc"):
 context.calc = Calculator()
 context.calc.enter_number(zahl)

@when('ich die Additionsfunktion
ausführe')
def step_perform_add(context):
 # Führt die gewünschte
Operation aus
 context.result =
context.calc.add()

@then('sollte das Ergebnis
{expected:d} auf dem Bildschirm
erscheinen')
def step_verify_result(context,
expected):
 # Überprüft das sichtbare
Resultat der App
 assert context.result ==
expected

 def enter_number(self, value):
 # Zahl zur Eingabeliste
hinzufügen
 self.numbers.append(value)

 def add(self):
 # Beispiel-Implementierung:
summiert alle Werte
 result = sum(self.numbers)
 # leert Eingaben für
nächsten Vorgang
 self.numbers.clear()
 return result

Hinweise:

Das Modul calculator.py ist die zu testende Applikation, nicht Teil des Tests selbst.
Die Datei calculator_steps.py beschreibt nur das erwartete Verhalten.
Der context erlaubt den Austausch von Objekten (z. B. der App) zwischen den Schritten.
Jeder Given/When/Then-Schritt entspricht einem Teil der Benutzerinteraktion.

Tests ausführen

Im Terminal:

behave

Ergebnis (Auszug):

Feature: Einfacher Taschenrechner
 Scenario: Zwei Zahlen addieren
 Given ich habe 50 in die App eingegeben
 And ich habe 70 in die App eingegeben
 When ich die Additionsfunktion ausführe
 Then sollte das Ergebnis 120 auf dem Bildschirm erscheinen

Last
update:
2025/10/23
09:16

modul:m450:learningunits:lu16:behant_python https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761203765

https://wiki.bzz.ch/ Printed on 2026/02/12 07:15

1 feature passed, 0 failed

Vorteile von Behave

Tests sind verständlich für Entwickler:innen und Fachpersonen
Klarer Bezug zu Anforderungen oder Benutzerstories
Schritte sind wiederverwendbar für mehrere Szenarien
Einfach automatisierbar in CI/CD-Pipelines (z. B. GitHub Actions, Jenkins)

Vergleich zu Unit Tests
Aspekt Unit Test BDD (Behave)
Fokus einzelne Funktion / Methode Verhalten aus Nutzersicht
Sprache Code (Python) Gherkin (natürliche Sprache)
Zielgruppe Entwickler:innen Fachpersonen + Entwickler:innen

Beispiel `assert add(2,3)==5` „Given ich habe 2 und 3 eingegeben, When ich addiere, Then
erhalte ich 5“

Installation

Installation mit pip:

pip install behave

Typische Fehlerquellen

Schrittdefinition fehlt oder Schreibweise weicht ab
Python-Datei liegt nicht im steps/-Ordner
Context-Variable nicht initialisiert
Feature-Datei hat keine Endung .feature

Weiterführende Links

Offizielle Dokumentation: https://behave.readthedocs.io
Gherkin-Syntax Referenz: https://cucumber.io/docs/gherkin/reference/
Vergleich zu pytest-bdd: https://pytest-bdd.readthedocs.io

https://behave.readthedocs.io
https://cucumber.io/docs/gherkin/reference/
https://pytest-bdd.readthedocs.io

2026/02/12 07:15 5/5 LU16e – Behaviour Driven Development (BDD) in Python

BZZ - Modulwiki - https://wiki.bzz.ch/

MXXX-LU16e

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761203765

Last update: 2025/10/23 09:16

https://wiki.bzz.ch/tag/mxxx-lu16e?do=showtag&tag=MXXX-LU16e
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu16/behant_python?rev=1761203765

	LU16e – Behaviour Driven Development (BDD) in Python
	Einführung
	Ziel von BDD
	Ausgangssituation: Eine kleine App
	Aufbau eines Behave-Projekts
	Gherkin-Syntax
	Schrittdefinitionen und getestete App
	Tests ausführen
	Vorteile von Behave
	Vergleich zu Unit Tests
	Installation
	Typische Fehlerquellen
	Weiterführende Links

