
2025/11/27 06:51 1/9 2. Python-Exceptions

BZZ - Modulwiki - https://wiki.bzz.ch/

2. Python-Exceptions

Inhalt

Ausnahmen versus Syntaxfehler
Der try...except Block: Umgang mit Ausnahmen
Die else Klausel
Aufräumen nach der finally Verwendung
Auslösen einer Ausnahme
Bedingungen sicherstellen
Zusammenfassung

Ein Python-Programm wird beendet, sobald es auf einen Fehler stösst. In Python kann ein Fehler ein
Syntaxfehler oder eine Ausnahme sein. In diesem Artikel erfahren Sie, was eine Ausnahme ist und wie
sie sich von einem Syntaxfehler unterscheidet. Danach erfahren Sie, wie Sie Ausnahmen auslösen und
Zusicherungen aufstellen. Dann werden Sie mit einer Demonstration des try...except Blocks
abschliessen.

Ausnahmen versus Syntaxfehler

Syntaxfehler treten auf, wenn der Parser eine falsche Anweisung erkennt. Beachten Sie folgendes
Beispiel:

>>> print(0 / 0))
 File "<stdin>", line 1
 print(0 / 0))
 ^
SyntaxError: invalid syntax

Der Pfeil zeigt an, wo der Parser auf den Syntaxfehler gestossen ist. In diesem Beispiel war eine
Klammer zu viel. Entfernen Sie diese und führen Sie Ihren Code erneut aus:

>>> print(0 / 0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero

Dieses Mal ist ein Ausnahmefehler aufgetreten. Dieser Fehlertyp tritt immer dann auf, wenn

https://realpython.com/invalid-syntax-python/

Last update:
2024/03/28
14:07

modul:m450:learningunits:lu99:theorie:lu1-kapitel_2 https://wiki.bzz.ch/modul/m450/learningunits/lu99/theorie/lu1-kapitel_2

https://wiki.bzz.ch/ Printed on 2025/11/27 06:51

syntaktisch korrekter Python-Code zu einem Fehler führt. Die letzte Zeile der Meldung gibt an, auf
welche Art von Ausnahmefehler Sie gestossen sind.

Anders als beim Syntaxfehler gibt Python an, welche Art von Ausnahmefehler aufgetreten ist. In
diesem Fall war es ein ZeroDivisionError. Python verfügt über verschiedene eingebaute
Ausnahmen sowie die Möglichkeit, selbst definierte Ausnahmen zu erstellen.

Der try...except Block: Umgang mit Ausnahmen

Der try...except Block in Python wird zum Abfangen und Behandeln von Ausnahmen
verwendet. Python führt Code nach der try Anweisung als „normalen“ Teil des Programms aus. Der
Code, der der except Anweisung folgt, ist die Antwort des Programms auf alle Ausnahmen in der
vorhergehenden try Klausel.

Wie Sie bereits gesehen haben, gibt Python einen Ausnahmefehler aus, wenn syntaktisch korrekter
Code auf einen Fehler stösst. Dieser Ausnahmefehler führt zum Absturz des Programms, wenn er
nicht behandelt wird. Die except Klausel bestimmt, wie Ihr Programm auf Ausnahmen reagiert.

Die folgende Funktion kann Ihnen helfen, den try...except Block zu verstehen:

def process_orders(quantity: int):
 if quantity < 100:
 # hier wird ein Fehler erkannt und das passende Fehlerobjekt - im
Beispiel ProcessingError - erzeugt
 raise ProcessingError("Not enough orders to start processing.")
 else:
 print('Processing orders.')

Die Funktion process_orders() kann nur erfolgreich mit Werten grösser oder gleich 100
ausgeführt werden. Andernfalls löst raise in dieser Funktion eine ProcessingError Exception aus.

Mit try können Sie dennoch einen Versuch wagen, die Funktion aufzurufen:

try:
 process_orders(99)
except:

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html

2025/11/27 06:51 3/9 2. Python-Exceptions

BZZ - Modulwiki - https://wiki.bzz.ch/

 pass

Der Fehler wird hier mit pass behandelt. Wenn Sie diesen Code ausführen würden, erhalten Sie die
folgende Ausgabe:

Nichts. Das Gute dabei ist, dass das Programm nicht abgestürzt ist. Aber es wäre schön zu sehen, ob
bei der Ausführung Ihres Codes eine Ausnahme aufgetreten ist. Zu diesem Zweck können Sie pass
wie folgt durch die Ausgabe einer Nachricht ersetzen:

try:
 process_orders(99)
except:
 print('Function was not executed')

Führen Sie diesen Code aus:

Function was not executed

Wenn in einem Programm, das diese Funktion ausführt, eine Ausnahme auftritt, wird das Programm
fortfahren und Sie darüber informieren, dass der Funktionsaufruf nicht erfolgreich war.

Was Sie nicht gesehen haben, war die Art des Fehlers, der als Ergebnis des Funktionsaufrufs
ausgelöst wurde. Um genau zu sehen, was schief gelaufen ist, müssten Sie den Fehler abfangen, den
die Funktion ausgelöst hat.

Der folgende Code ist ein Beispiel, in dem Sie die Nachricht aus dem ProcessingError extrahieren
und auf dem Bildschirm ausgeben:

try:
 process_orders(99)
except ProcessingError as error:
 print(error)
 print('Function was not executed')

Folgendes wird ausgegeben:

Not enough orders to start processing.
Function was not executed

Die erste Meldung ist der ProcessingError. Die zweite Meldung gibt an, dass die Funktion nicht
ausgeführt wurde.

Im vorherigen Beispiel haben Sie eine selbst geschriebene Funktion aufgerufen. Als Sie die Funktion
ausgeführt haben, haben Sie die ProcessingError Ausnahme abgefangen und auf dem Bildschirm
ausgegeben.

Hier ist ein weiteres Beispiel, in dem Sie eine Datei öffnen und dabei auf Exceptions prüfen:

try:

Last update:
2024/03/28
14:07

modul:m450:learningunits:lu99:theorie:lu1-kapitel_2 https://wiki.bzz.ch/modul/m450/learningunits/lu99/theorie/lu1-kapitel_2

https://wiki.bzz.ch/ Printed on 2025/11/27 06:51

 with open('file.log') as file:
 read_data = file.read()
except:
 print('Could not open file.log')

Wenn file.log nicht vorhanden ist, gibt dieser Codeblock folgendes aus:

Could not open file.log

Dies ist eine informative Nachricht, und unser Programm wird weiterhin ausgeführt. In der Python-
Dokumentation können Sie sehen, dass Python viele sog. Built-in Exceptions anbietet, die Sie
verwenden können. Eine auf dieser Seite beschriebene Ausnahme ist diese:

Ausnahme FileNotFoundError

Wird ausgelöst, wenn eine Datei oder ein Verzeichnis angefordert wird, aber nicht vorhanden
ist. Entspricht errno ENOENT.

Um diese Art von Ausnahme abzufangen und auf dem Bildschirm auszugeben, können Sie den
folgenden Code verwenden:

try:
 with open('file.log') as file:
 read_data = file.read()
except FileNotFoundError as fnf_error:
 print(fnf_error)

Wenn in diesem Fall file.log nicht vorhanden ist, lautet die Ausgabe wie folgt:

[Errno 2] No such file or directory: 'file.log'

Sie können mehr als einen Funktionsaufruf in Ihrer try Klausel haben und sollten damit rechnen,
verschiedene Ausnahmen abzufangen. Hier ist zu beachten, dass der Code in der try Klausel beendet
wird, sobald eine Ausnahme auftritt.

Warnung: Catching Exception verbirgt alle Fehler … auch die völlig unerwarteten. Aus
diesem Grund sollten Sie in Ihren Python-Programmen allgemeine Überprüfungen auf
Exception vermeiden und stattdessen spezifische Ausnahmeklassen verwenden,
die Sie einzeln abfangen und behandeln. In diesem Tutorial erfahren Sie mehr darüber,
warum dies eine gute Idee ist.

Hier sind die wichtigsten Erkenntnisse:

Eine try Klausel wird bis zu dem Punkt ausgeführt, an dem die erste Ausnahme auftritt.
Innerhalb der except Klausel bestimmen Sie, wie das Programm auf die Ausnahme reagiert.
Dabei können Sie verschiedene Ausnahmen prüfen und jeweils anders darauf reagieren, so wie

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://realpython.com/the-most-diabolical-python-antipattern/

2025/11/27 06:51 5/9 2. Python-Exceptions

BZZ - Modulwiki - https://wiki.bzz.ch/

es erforderlich ist.
Verwenden Sie keine leeren except Blöcke und benennen Sie die erwarteten und behandelten
Ausnahmen konkret!

Die else Klausel

In Python können Sie mit der else-Anweisung ein Programm anweisen, einen bestimmten Codeblock
nur ohne Ausnahmen auszuführen.

Sehen Sie sich das folgende Beispiel an:

try:
 process_orders()
except ProcessingError as error:
 print(error)
else:
 print('Executing the else clause.')

Wenn Sie diesen Code ausführen und kein Fehler auftritt, würde die Ausgabe wie folgt aussehen:

Doing something. Executing the else clause.

Da das Programm auf keine Ausnahmen gestossen ist, wurde die else Klausel ausgeführt.

Sie können auch try Code innerhalb der else Klausel ausführen und dort auch mögliche Ausnahmen
abfangen:

try:
 process_orders()
except ProcessingError as error:
 print(error)
else:

Last update:
2024/03/28
14:07

modul:m450:learningunits:lu99:theorie:lu1-kapitel_2 https://wiki.bzz.ch/modul/m450/learningunits/lu99/theorie/lu1-kapitel_2

https://wiki.bzz.ch/ Printed on 2025/11/27 06:51

 try:
 with open('file.log') as file:
 read_data = file.read()
 except FileNotFoundError as fnf_error:
 print(fnf_error)

Wenn die Datei nicht gelesen werden kann, würden Sie das folgende Ergebnis erhalten:

Doing something.
[Errno 2] No such file or directory: 'file.log'

Aus der Ausgabe können Sie sehen, dass die process_orders() Funktion ausgeführt wurde. Da
keine Ausnahmen aufgetreten sind, wurde versucht, file.log zu öffnen. Diese Datei war nicht
vorhanden und, anstatt die Datei zu öffnen, haben Sie die FileNotFoundError Ausnahme
abgefangen.

Aufräumen nach der finally Verwendung

Stellen Sie sich vor, Sie müssten nach der Ausführung Ihres Codes immer eine Aktion zum Aufräumen
implementieren. Python ermöglicht Ihnen dies mit der finally Klausel.

Sehen Sie sich das folgende Beispiel an:

try:
 process_orders()

2025/11/27 06:51 7/9 2. Python-Exceptions

BZZ - Modulwiki - https://wiki.bzz.ch/

except ProcessingError as error:
 print(error)
else:
 try:
 with open('file.log') as file:
 read_data = file.read()
 except FileNotFoundError as fnf_error:
 print(fnf_error)
finally:
 print('Cleaning up, irrespective of any exceptions.')

Die finally Klausel wird immer ausgeführt. Dabei spielt es keine Rolle, ob Sie irgendwo in den try
oder else Klauseln auf eine Ausnahme stossen. Das Unter der Annahme, dass beim Verarbeiten der
Bestellungen ein Fehler auftritt, würde folgendes ausgegeben:

Processing Error occured.
Cleaning up, irrespective of any exceptions.

Auslösen einer Ausnahme

Falls eine bestimmte Bedingung eintritt, können Sie mit raise eine Ausnahme auslösen. Die
Anweisung kann durch eine benutzerdefinierte Ausnahme ergänzt werden.

Um einen Fehler zu werfen, können Sie folgendes tun:

x = 10
if x > 5:
 raise Exception(f"x should not exceed 5. The value of x was: {x}")

Wenn Sie den Code ausführen, erhalten Sie folgende Ausgabe:

Traceback (most recent call last):
 File "<input>", line 4, in <module>
Exception: x should not exceed 5. The value of x was: 10

Das Programm hält an und präsentiert unsere Ausnahme auf dem Bildschirm, zusammen mit
Hinweisen darüber, was schief gelaufen ist.

Bedingungen sicherstellen

Last update:
2024/03/28
14:07

modul:m450:learningunits:lu99:theorie:lu1-kapitel_2 https://wiki.bzz.ch/modul/m450/learningunits/lu99/theorie/lu1-kapitel_2

https://wiki.bzz.ch/ Printed on 2025/11/27 06:51

Mit assert stellen Sie sicher, dass eine bestimmte Bedingung erfüllt ist. Wenn sich herausstellt, dass
dieser Zustand True ist, dann ist das ausgezeichnet! Das Programm kann fortgesetzt werden. Wenn
sich herausstellt, dass die Bedingung False lautet, wirde eine AssertionError Ausnahme
ausgelöst und das Programm beendet.

Schauen Sie sich das folgende Beispiel an:

x = -1

#if condition returns False, AssertionError is raised:
assert x >= 0, "The value x should be positive."

Wenn Sie diesen Code ausführen, ist das Ergebnis der Assertion False und angezeigt wird:

Traceback (most recent call last):
 File "<input>", line 4, in <module>
 assert x >= 0, "The value x should be positive."
AssertionError: The value x should be positive.

In diesem Beispiel ist das Auslösen einer AssertionError Ausnahme das Letzte, was das Programm
tun wird. Das Programm wird beendet.

Achtung: assert ist in Python dazu gedacht, um während der Entwicklungsphase
sicherzustellen, dass gewisse Erwartungen erfüllt werden (z.B. dass Funktionen
vernünftige Werte zurückgeben). Dabei ist darauf zu achten, dass ein assert frühzeitig
fehlschlägt (an der Stelle, an der der Fehler erkannt wurde). Daher sind AssertErrors
nicht dazu gedacht, programmgesteuert erfasst oder behandelt zu werden mit
try…except. Am besten verwenden Sie assert überhaupt nicht in produktivem Code,
sondern ausschliesslich in Unit Tests �

Zusammenfassung

Nachdem Sie den Unterschied zwischen Syntaxfehlern und Ausnahmen gesehen haben, haben Sie
verschiedene Möglichkeiten zum Auslösen, Abfangen und Behandeln von Ausnahmen in Python
kennengelernt und gesehen wie man die folgenden Schlüsselwörter verwendet:

2025/11/27 06:51 9/9 2. Python-Exceptions

BZZ - Modulwiki - https://wiki.bzz.ch/

In der try Klausel werden alle Anweisungen ausgeführt, bis eine Ausnahme auftritt.
except wird verwendet, um die in der try-Klausel auftretenden Ausnahmen abzufangen und zu
behandeln.
else lässt Sie Abschnitte codieren, die nur ausgeführt werden sollen, wenn in der try-Klausel
keine Ausnahmen auftreten.
finally ermöglicht es Ihnen, Codeabschnitte auszuführen, die immer ausgeführt werden
sollten, mit oder ohne zuvor aufgetretene Ausnahmen.
raise ermöglicht es Ihnen, jederzeit eine Ausnahme auszulösen.
Mit assert können Sie überprüfen, ob eine bestimmte Bedingung erfüllt ist, und mit einer
Ausnahme das Programm beenden, sollte dies nicht der Fall sein. Empfehlung: assert am
besten überhaupt nicht im produktiven Code verwenden!

Hoffentlich hat Ihnen dieser Artikel geholfen, die grundlegenden Tools zu verstehen, die Python beim
Umgang mit Ausnahmen zu bieten hat.

Credits: Der Inhalt dieses Artikels wurde grösstenteils direkt aus dem Englischen übernommen und
nur leicht modifiziert. Das Original wurde hauptsächlich von Said van de Klundert verfasst und via
Real Python veröffentlich.

From:
https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:
https://wiki.bzz.ch/modul/m450/learningunits/lu99/theorie/lu1-kapitel_2

Last update: 2024/03/28 14:07

https://realpython.com/team/svdklundert/
https://realpython.com/python-exceptions/
https://wiki.bzz.ch/
https://wiki.bzz.ch/modul/m450/learningunits/lu99/theorie/lu1-kapitel_2

	[2. Python-Exceptions]
	2. Python-Exceptions
	Inhalt
	Ausnahmen versus Syntaxfehler
	Der try...except Block: Umgang mit Ausnahmen
	Die else Klausel
	Aufräumen nach der finally Verwendung
	Auslösen einer Ausnahme
	Bedingungen sicherstellen
	Zusammenfassung

