2025/10/18 00:46 1/7 Lösung 8

## Lösung 8

## Aufgabe 1

Gegeben ist die folgende WHT. Minimieren Sie diese nach den Regeln der boolschen Algebra. Nutzen Sie - wie in der Theorie gezeigt - die Idee der Substitution und folgende Gesetze:

- Kommutativgesetz
- Distributivgesetz
- Komplementärgesetz
- Neutralitätsgesetz

|   | IN |   | 1 | OUT |
|---|----|---|---|-----|
| A | В  | C | ! | X   |
| 0 | 0  | 0 | I | 1   |
| 0 | 0  | 1 | I | 0   |
| 0 | 1  | 0 | 1 | 1   |
| 0 | 1  | 1 | 1 | 0   |
| 1 | 0  | 0 | 1 | 1   |
| 1 | 0  | 1 | 1 | 0   |
| 1 | 1  | 0 | 1 | 0   |
| 1 | 1  | 1 | I | 1   |

## Lösung als DNF

X =

 $(\neg\)A(\wedge\)(\neg\)C) (A(\vee\)(\neg\)B(\vee\)(\neg\)C) (\neg\)B(\vee\)(\neg\)C) (\neg\)B(\vee\)(\neg\)C) (\neg\)C) (\$  $(\vee) ((\neg)A(\wedge))(\neg)C) ((\neg)A(\vee))(\neg)C) ((\neg)A(\vee))(\neg)C) ((\neg)C) ((\$  $(\vee) (A(\wedge))(\neg)B(\wedge))(\neg)A(\vee))(\neg)B(\vee)C)$  $\(\) (A(\) (A(\) B(\) B(\) C)$ Anwenden von Kommutativ-, Distributiv-, Komplementär- und Neutralitätsgesetz.

um, so dass wir ein "passendes" Paar erkennen können... können...

X =

 $(\neg\)A(\neg\)B(\neg\)(\neg\)C)$ g\)C) \(\vee\)

 $(A(\wedge))(\neg)B(\wedge))(\neg)C)$ 

\(\vee\) (\(\neg\)A\(\wedge\)B\(\wedge\)\(\neg\)C) substituieren wir (gedanklich) den Term  $\(\vee\) (A(\wedge\)B(\wedge\)C)$ 

...und wenden das Distributivgesetz an. Dabei substituieren wir (gedanklich) den Term  $(\neg\)B(\neg\)(\neg\)C).$ 

 $(\neg\)A(\wedge\)(\neg\)C) = 0 (\wedge\)$  $(\vee) (A(\wedge))(\neg)B(\wedge))(\neg)C) (B(\vee))(\neg)C) (Rightarrow)$ und erhalten ( \(\neg\)A\(\vee\)A) \(\wedge\)  $(\neg\)B(\neg\)(\neg\)C) = 1 (\wedge\)$  $(\neg\)B(\neg\)(\neg\)C) \(\neg\)C)$ 

 $(\neg\)B(\neg\)(\neg\)C)$ 

Lösung als KNF

 $X = (A(\langle Vee \rangle) (\langle Neg \rangle) (\langle Vee \rangle)$ Anwenden von Kommutativ-, Distributiv-, Komplementär- und Neutralitätsgesetz.

Wir stellen die Terme mittels Kommutativgesetz Wir stellen die Terme mittels Kommutativgesetz um, so dass wir ein "passendes" Paar erkennen

> $X = (A(\langle e \rangle)B(\langle e \rangle)(\langle e \rangle) (\langle e \rangle)$ (\(\neg\)A\(\vee\)B\(\vee\)\(\neg\)C)

...und wenden das Distributivgesetz an. Dabei  $(B(\langle vee \rangle)(\langle neg \rangle)C).$ 

 $(A(\langle e \rangle)B(\langle e \rangle)(\langle e \rangle)(\langle e \rangle)$  $(\neg\)A(\vee\)B(\vee\)(\neg\)C)$ und erhalten (A\(\wedge\)\(\neg\)A) \(\vee\)

 $(B(\langle vee \rangle)(\langle neg \rangle)C)$ 

Wir stellen den Ausdruck erneut um und finden wieder ein Paar, auf das wir das Distributivgesetz anwenden können.

wieder ein Paar, auf das wir das Distributivgesetz anwenden können.

X =

 $(\neg\)A(\neg\)(\neg\)(\neg\)C)$ g\)C) \(\vee\)

 $(\neg\)A(\wedge\)B(\wedge\)(\neg\)C)$ 

 $(\vee) (A(\wedge))(\neg) (A(\vee))(\neg) (A(\vee))(\neg) =$  $\(\) (A(\) (A(\) B(\) B(\) C)$ 

Hier wird der Term  $(\neg\)A(\neg\)C(\neg\)B)$ (gedanklich) substituiert.

 $(\neg\)A(\wedge\)(\neg\)C) = 0 (\vee\) (A(\vee\)(\neg\)C) (\neg\)C)$ 

 $(\vee) (\neg)A(\wedge)B(\wedge))(\neg)C) (A(\vee))(\neg)C)$ 

 $(\neg\) \(\neg\) \$ \(\vee\) (B\(\wedge\)\(\neg\)A\(\wedge\)\(\neg\)C) kann mit keinem anderen Term minimiert  $(\neg\)B(\vee\)B) \(\wedge\)$ 

 $(\neg\)A(\neg\)(\neg\)C) = 1 (\wedge\)$  $(\neg\)A(\neg\)(\neg\)C) \(\neg\)C)$ 

 $(\neg\)A(\neg\)(\neg\)C)$ 

 $(A\(\wedge\)B\(\wedge\)C)$ 

Der Term (A\(\wedge\)B\(\wedge\)C) kann mit keinem anderen Term minimiert werden und bleibt so stehen. Somit ergibt sich für die minimierte Lösung  $X = (\langle neg \rangle B \langle wedge \rangle (\langle neg \rangle C) \langle vee \rangle$  $(\neg\)A(\neg\)(\neg\)C) \(\vee\)$ 

Wir stellen den Ausdruck erneut um und finden  $X = (A(\langle vee \rangle) (\langle vee \rangle)) (\langle vee \rangle)$  $(A(\langle e \rangle)(\langle e \rangle)(\langle e \rangle)(\langle e \rangle)$ 

(gedanklich) substituiert.

 $(A(\langle e \rangle)B(\langle e \rangle)(\langle e \rangle)(\langle e \rangle)$ 

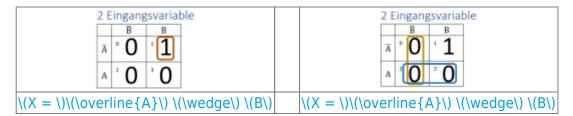
 $(A(\langle vee \rangle)(\langle vee \rangle)B) (\langle wedge \rangle)$ 

 $(\neg\)A(\vee\)(\neg\)B(\vee\)C)$ 

 $(B(\wedge))(\neg)B) (\vee) (A(\vee))(\neg)C)$ 

werden und bleibt so stehen. Somit ergibt sich für die minimierte Lösung  $X = (B(\langle vee \rangle)(\langle neg \rangle)) (\langle wedge \rangle)$  $(A\(\vee\)\(\neg\)C) \(\wedge\)$ 

# Hinweis:


Terme können immer paarweise minimiert werden. Bei 4 und mehr Variablen kann es so aber zu einer Überdeckung kommen. D.h. dass es Terme gibt, die redundante Werte liefern. In diesem Fall prüft man das Ergebnis und schaut, ob man wiederum den bereits minimierten Ausdruck minimierne kann. Das führt man solange fort, bis ein Ausdruck vorliegt, bei dem keine Minimierung mehr möglich ist.

#### Aufgabe 2

Erstellen Sie anhand der WHT mittels KV-Diagramm einen minimierten boolschen Ausdruck für X. Sie können selber wählen, ob das Ergebnis als DNF oder KNF angeschreiben wird.

| T        |   |  |     |
|----------|---|--|-----|
| <u> </u> |   |  |     |
|          |   |  |     |
|          |   |  |     |
|          |   |  |     |
|          |   |  |     |
|          |   |  |     |
| _        |   |  |     |
|          |   |  |     |
|          |   |  |     |
| DNF      | _ |  | I I |

https://wiki.bzz.ch/ Printed on 2025/10/18 00:46 2025/10/18 00:46 3/7 Lösung 8



# **Aufgabe 3**

Erstellen Sie anhand der WHT mittels KV-Diagramm einen minimierten boolschen Ausdruck für X.Geben Sie das Ergebnis sowohl als DNF wie auch als KNF an.

|   | IN |   | I    | OUT |
|---|----|---|------|-----|
| A | В  | C | ŀ    | X   |
| 0 | 0  | 0 | I    | 1   |
| 0 | 0  | 1 | I    | 0   |
| 0 | 1  | 0 | 1    | 0   |
| 0 | 1  | 1 | 1    | 0   |
| 1 | 0  | 0 | 1    | 1   |
| 1 | 0  | 1 | <br> | 1   |
| 1 | 1  | 0 | I    | 0   |
| 1 | 1  | 1 | 1    | 1   |

| DNF                                                                                           | KNF                                                                                                                                     |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 3 Eingangsvariable  A 1 1 0 3 0 2 0  A 1 1 7 1 0 0                                            | 3 Eingangsvariable                                                                                                                      |
| $(X = ) ((  overline{B} )) (  wedge )) (  overline{C} )) ((  vee ) (  (A) ) (  wedge )) (C))$ | $(X = ) ((A))(\langle e \rangle)(\langle e \rangle)(\langle e \rangle))$ $(\langle e \rangle) ((\langle e \rangle))(\langle e \rangle)$ |

## Aufgabe 4

Erstellen Sie anhand der WHT mittels KV-Diagramm einen minimierten boolschen Ausdruck für X.Geben Sie das Ergebnis sowohl als DNF wie auch als KNF an.

|   | Ш | V | I | OUT  |   |
|---|---|---|---|------|---|
| A | В | C | D | ŀ    | X |
| 0 | 0 | 0 | 0 | I    | 1 |
| 0 | 0 | 0 | 1 | I    | 1 |
| 0 | 0 | 1 | 0 | I    | 1 |
| 0 | 0 | 1 | 1 | I    | 1 |
| 0 | 1 | 0 | 0 | I    | 1 |
| 0 | 1 | 0 | 1 | 1    | 0 |
| 0 | 1 | 1 | 0 | I    | 1 |
| 0 | 1 | 1 | 1 | I    | 1 |
| 1 | 0 | 0 | 0 | <br> | 1 |
| 1 | 0 | 0 | 1 | 1    | 0 |
| 1 | 0 | 1 | 0 | I    | 0 |

upaate: 2024/03/28 modul:mathe:ma1:thema:lu04logik:aufgaben:leitprogramm:k9:l8:start https://wiki.bzz.ch/modul/mathe/ma1/thema/lu04logik/aufgaben/leitprogramm/k9/l8/start

| 1 | 0 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | I | 1 |
| 1 | 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 1 | 0 | I | 0 |
| 1 | 1 | 1 | 1 | I | 1 |

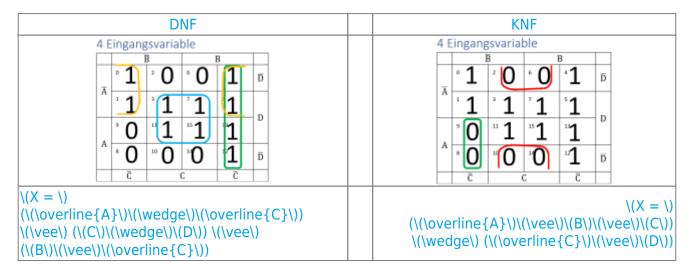
| DNF                                            |           | KNF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4 Eingangsvariable                             |           | 4 Eingangsvariable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| B B                                            | .         | B B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                |           | D 2 6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1 1 1 1 n                                      |           | Ā 1 3 7 5 0 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3 n 15 1 n                                     |           | A 9 0 12 0 15 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \(X =\)                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (\(\overline{A}\)\(\wedge\)\(\overline{B}\))   | .         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \(\vee\)                                       | .         | \(X = \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $((\overline{A}))(\wedge))(\overline{D}))$     | .         | $(\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\(\)\($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| \(\vee\)                                       | .         | $\(\wedge\) ((\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\$ |
|                                                | .         | $\(\wedge\) (\(\vee\)\(\c\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\(\vee\)\($ |
| (\(\overline{C}\)\(\wedge\)\(\overline{D}\))   | .         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| \(\vee\) (\(B\)\(\wedge\)\(C\)\(\wedge\)\(D\)) | $\square$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# **Aufgabe 5**

Gegeben ist ein Ausruck in kanonischer Form, konkret als KKNF. Minimieren Sie diesen unter Verwendung des KV-Diagramms.

# Vorgehen:

Sie können die einzelnen Terme direkt in die KV-Matritze übertragen oder aber zuerst eine WHT erstellen und den Übertrag so vornehmen.


#### Ausdruck:

 $X = (A\(\vee\)B\(\vee\)C\(\vee\)D) \ ((\vee\)B\(\vee\)C\(\vee\)D) \ ((\vee\)A\(\vee\)B\(\vee\)C\(\vee\)D) \ ((\vee\)A\(\vee\)B\(\vee\)C\(\vee\)D) \ ((\vee\)A\(\vee\)B\(\vee\)C\(\vee\)D) \ ((\vee\)B\(\vee\)B\(\vee\)C\(\vee\)D) \ ((\vee\)B\(\vee\)B\(\vee\)B\(\vee\)D) \ ((\vee\)B\(\vee\)B\(\vee\)B\(\vee\)D) \ ((\vee\)B\(\vee\)B\(\vee\)B\(\vee\)D) \ ((\vee\)B\(\vee\)B\(\vee\)B\(\vee\)D) \ ((\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)D) \ ((\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\vee\)B\(\v$ 

https://wiki.bzz.ch/ Printed on 2025/10/18 00:46

2025/10/18 00:46 5/7 Lösung 8

| Α | В | С | D | sicher |
|---|---|---|---|--------|
| 0 | 0 | 0 | 0 | 1      |
| 0 | 0 | 0 | 1 | 1      |
| 0 | 0 | 1 | 0 | 0      |
| 0 | 0 | 1 | 1 | 1      |
| 0 | 1 | 0 | 0 | 1      |
| 0 | 1 | 0 | 1 | 1      |
| 0 | 1 | 1 | 0 | 0      |
| 0 | 1 | 1 | 1 | 1      |
| 1 | 0 | 0 | 0 | 0      |
| 1 | 0 | 0 | 1 | 0      |
| 1 | 0 | 1 | 0 | 0      |
| 1 | 0 | 1 | 1 | 1      |
| 1 | 1 | 0 | 0 | 1      |
| 1 | 1 | 0 | 1 | 1      |
| 1 | 1 | 1 | 0 | 0      |
| 1 | 1 | 1 | 1 | 1      |



## Aufgabe 6

Lernende möchten ja gerne früher den Heimweg antreten, insbesondere dann, wenn sie so eine frühere Zugverbindung erreichen könnne. Das gilt erst recht in der Winterzeit, wenn die "Umweltbedingungen" das Leben mitunter ein wenig erschweren.

Als Variable treten folgende Bedingungen auf:

- es regnet
- es ist dunkel
- der Zug fährt pünktlich
- es ist rutschig

Damit man früher gehen kann, muss der Zug sicher pünktlich fahren (sonst hat man ja eh mehr Zeit). Weiter genügt es nicht, dass es nur dunkel ist, es braucht schon auch Regen oder Glätte, damit die Bedingung für den Gehweg schlecht sind.

## Für die Ausgangsvariable gilt:

- 0 = nicht früher gehen
- 1 = früher gehen

Erstellen Sie den Ausdruck für diese Konstellation. Wählen Sie dabei selber, ob das Ergebnis als DNF oder KNF wiedergegeben wird.

## **Defintion der Variablen**

| Regen:         | RE | 0 = kein Regen, 1 = Regen    |
|----------------|----|------------------------------|
| Dunkel:        | DU | 0 = hell, 1 = dunkel         |
| Zug pünktlich: | ZP | 0 = verspätet, 1 = pünktlich |
| Rutschig:      | RU | 0 = trocken, 1 = rutschig    |
| Früher gehen:  | FG | 0 = nein, 1 = ja             |

#### Erstellen der WHT

|    | II | I<br>I | OUT |   |    |
|----|----|--------|-----|---|----|
| RE | DU | ZP     | RU  | ŀ | FG |
| 0  | 0  | 0      | 0   | I | 0  |
| 0  | 0  | 0      | 1   | ŀ | 0  |
| 0  | 0  | 1      | 0   | ! | 0  |
| 0  | 0  | 1      | 1   | ! | 0  |
| 0  | 1  | 0      | 0   | ŀ | 0  |
| 0  | 1  | 0      | 1   | ŀ | 0  |
| 0  | 1  | 1      | 0   | ŀ | 0  |
| 0  | 1  | 1      | 1   | ! | 1  |
| 1  | 0  | 0      | 0   | ! | 0  |
| 1  | 0  | 0      | 1   | ! | 0  |
| 1  | 0  | 1      | 0   | l | 0  |
| 1  | 0  | 1      | 1   | ŀ | 0  |
| 1  | 1  | 0      | 0   | ! | 0  |
| 1  | 1  | 0      | 1   | ! | 0  |
| 1  | 1  | 1      | 0   | ! | 1  |
| 1  | 1  | 1      | 1   | 1 | 1  |

## Übertragen in KV-Diagramm

4 Eingangsvariable

|   |   | В   |   | В  |   |
|---|---|-----|---|----|---|
|   | 0 | 2   | 6 | 4  | D |
| Ā | 1 | 1   | 1 | s  |   |
|   | 9 | 11. | 1 | 13 | D |
| Α | 8 | 30  | 1 | 12 | D |
|   | č |     | C | č  | - |

# **Minimierter Ausdruck**

 $FG = (RE\(\wedge\)DU\(\wedge\)ZP) \(\wedge\)ZP\(\wedge\)RU)$ 

https://wiki.bzz.ch/ Printed on 2025/10/18 00:46

2025/10/18 00:46 7/7 Lösung 8

#### Hinweis:

In Python-Code würde diese Aussage dann wie folgt aussehen:

if (it\_rains and is\_dark and train\_on\_time) or (is\_dark and train\_on\_time
and is\_slippery):
 # you can go home earlier

## zum Leitprogramm



From:

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/modul/mathe/ma1/thema/lu04logik/aufgaben/leitprogramm/k9/l8/start

Last update: 2024/03/28 14:07

