2025/11/21 12:34 1/2 2. Binome

2. Binome

Ein Binom ist ein Polynom aus nur zwei Gliedern (lateinisch "bi-": zwei-), also einfach eine Summe oder Differenz aus zwei Termen: (1 + 1); (a + b); (x - y); $(5ax + 13^{2})$. Große Bedeutung haben die binomischen Formeln für quadrierte Binome. Hier unterscheiden wir 3 Fälle:

- 1. $((a + b)^{2}) = ((a + b) \cdot (a + b)) = (a^{2} + 2ab + b^{2})$ mehr dazu von Studyflix
- 2. $((a b)^{2}) = ((a b) \cdot (a b)) = (a^{2} 2ab + b^{2})$ mehr dazu von Studyflix
- 3. $((a + b) \cdot (a b)) = (a^{2} b^{2})$ mehr da

mehr dazu von Studyflix

Neben den "Klassikern" mit der Potenz 2 kann ein Binom natürlich mit jeder anderen Zahl potenziert werden. Also z.B.

$$((a + b)^{4}) = (a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4})$$

Für den Ausdruck $((a + b)^{n})$ läuft die Potenz für a von n nach 0 und für b von 0 nach n

Allgemein:
$$((a+b)^{n}) = (a^{n}b^{0} + x \cdot a^{(n-1)}b^{1} + y \cdot a^{(n-2)}b^{2} + z \cdot a^{(n-3)}b^{3} + + y \cdot a^{2}b^{(n-2)} + x \cdot a^{1}b^{(n-1)} + a^{0}b^{n})$$

Die Koeffizienten lassen sich einfach berechnen. Aber noch einfacher geht das mit dem Pascal'schen Dreieck.

Pascal'sches Dreieck

Mit dem Pascal'schen Dreieck lassen sich die Koeffizienten eines potenzierten Binoms einfach herleiten. Es sieht wie folgt aus

Potenz	Faktoren												Formel	
0							1						$((a+b)^{0}) = 1$	
1						1		1					$((a+b)^{1}) = (a+b)$	
2					1		2		1				$((a+b)^{2}) = (a^{2} + 2ab + b^{2})$	
3				1		3		3		1			$((a+b)^{3}) = (a^{3} + 3a^{2}b + 3ab^{2} + b^{3})$	-
4			1		4		6		4		1		$((a+b)^{4}) = (a^{4} + 4a^{3}b + 6a^{2}b^{+ 4ab^{3}} + b^{4})$	{2}
5		1		5		10		10		5		1	$((a+b)^{5}) = (a^{5} + 5a^{4}b + 10)$ $a^{3}b^{2} + 10a^{2}b^{3} + 5ab^{4} + b^{5}$	\)
6	1		6		15		20		15		6		$((a+b)^{6}) = (a^{6} + 6a^{5}b + 15a^{4}b^{6} + 20a^{3}b^{3} + 15a^{2}b^{4} + 6ab^{5} + b^{6})$	^{2}

Und wie man zu den Faktoren des Pascal'schen Dreiecks kommt, erklärt Studyflix

```
Aber was geschieht, wenn nun das Binom \((2a + 3b)^{5}\) berechnet werden muss? Ganz einfach! In der Grundformel wird \(a\) durch \(2a\) und \(b\) durch \((3b\) ersetzt und somit der Faktor (hier 2 bzw. 3) eben auch mit der Potenz verrechnet. Das sieht dann wie folgt aus: \((2a+3b)^{5}\) = \((2^{5}a^{5} + 5\cdot2^{4}a^{4}\cdot3b + 10\cdot2^{3}a^{3}\cdot3^{2}b^{2} + 10\cdot2^{2}a^{2}\cdot3^{3}b^{3} + 5\cdot2a\cdot3^{4}b^{4} + 3^{5}b^{5}\) = \((32a^{5} + 5\cdot16a^{4}\cdot3b + 10\cdot8a^{3}\cdot9b^{2} + 10\cdot4a^{2}\cdot27b^{3} + 5\cdot2a\cdot81b^{4} + 243b^{5}\) = \((32a^{5} + 240a^{4}b + 720a^{3}b^{2} + 1080a^{2}b^{3} + 810ab^{4} + 243b^{5}\)  Und was geschieht, wenn das Binom \(((a - b)\)) potenziert wird? \(((a - b)^{3}\)) = \(((a^{2}-2ab+b^{2})\cdot(a-b)\)) = \((a^{3} - a^{2}b - 2a^{2}b + 2ab^{2} + ab^{2} - b^{3}\)\) = \((a^{3} - 3a^{2}b + 3ab^{2} - b^{3}\)\)
```


Für den Ausdruck \((a - b)^{n}\) wechselt das Opeartionszeichen zwischen \(+\) und \(-\). Allgemein: \\((a - b)^{n}\) = \(a^{n} - x \cdot a^{(n-1)}b + y \cdot a^{(n-2)}b^{2} - z \cdot a^{(n-3)}b^{3} + v \cdot a^{(n-4)}b^{4} - w \cdot a^{(n-5)}b^{5} +\)

From:

https://wiki.bzz.ch/ - BZZ - Modulwiki

Permanent link:

https://wiki.bzz.ch/modul/mathe/max/thema/binom/start

Last update: 2024/03/28 14:07

https://wiki.bzz.ch/ Printed on 2025/11/21 12:34