LU02e - By Value und By Reference bei Dataclasses und Objekten in Python
Einführung
In Python werden Objekte, einschließlich Dataclasses, immer By Reference
übergeben. Das bedeutet, dass bei der Übergabe eines Objekts an eine Funktion eine Referenz auf das Objekt übergeben wird und keine Kopie davon erstellt wird. Änderungen, die innerhalb der Funktion an den Attributen des Objekts vorgenommen werden, wirken sich direkt auf das ursprüngliche Objekt aus.
Dataclasses
Dataclasses wurden in Python 3.7 eingeführt und bieten eine bequeme Möglichkeit, Klassen zu definieren, die hauptsächlich Daten speichern. Sie reduzieren den Boilerplate-Code, der normalerweise mit der Definition von Klassen einhergeht, und bieten gleichzeitig eine klare und strukturierte Art der Datenverwaltung.
Hier ein einfaches Beispiel für eine Dataclass:
from dataclasses import dataclass @dataclass class Person: name: str age: int
Diese Dataclass Person
hat zwei Attribute: name
und age
.
By Reference bei Dataclasses
Da Dataclasses Objekte in Python sind, werden sie By Reference
übergeben. Das bedeutet, dass jede Veränderung der Attribute eines Dataclass-Objekts innerhalb einer Funktion direkt auf das Originalobjekt wirkt.
Beispiel: By Reference mit Dataclasses
from dataclasses import dataclass @dataclass class Person: name: str age: int def birthday(person: Person): """ Increments the age of the person by 1. """ person.age += 1 if __name__ == '__main__': p = Person(name='Alice', age=30) print(f'Vor der Änderung: {p}') # Output: Vor der Änderung: Person(name='Alice', age=30) birthday(p) print(f'Nach der Änderung: {p}') # Output: Nach der Änderung: Person(name='Alice', age=31)
In diesem Beispiel wird die Instanz der Dataclass Person
an die Funktion birthday()
übergeben. Da Objekte By Reference
übergeben werden, wird das Attribut age
der Originalinstanz p
direkt in der Funktion verändert.
Mutable und Immutable Attribute in Dataclasses
Python-Dataclasses können sowohl mutable als auch immutable Attribute enthalten. Unabhängig davon, ob die Attribute mutable oder immutable sind, wird die Dataclass selbst immer By Reference
übergeben.
Problem: Mutable Default Values
Ein häufiges Problem bei der Verwendung von mutable Objekten (wie Listen) in Dataclasses ist, dass alle Instanzen der Dataclass denselben Standardwert teilen können, wenn dieser direkt als Default-Wert gesetzt wird. Dies kann zu unerwartetem Verhalten führen.
from dataclasses import dataclass @dataclass class Student: name: str grades: list = [] # Problem: Alle Instanzen teilen sich dieselbe Liste. if __name__ == '__main__': student1 = Student(name='Alice') student2 = Student(name='Bob') student1.grades.append(90) print(student2.grades) # Output: [90] - Dies ist wahrscheinlich nicht das gewünschte Verhalten
In diesem Beispiel teilen sich alle Instanzen der Dataclass Student
die gleiche Liste grades
, da der Standardwert direkt gesetzt wurde. Wenn eine Note zu einer Instanz hinzugefügt wird, beeinflusst dies auch alle anderen Instanzen.
Lösung: Verwendung von `field(default_factory=list)`
Um dieses Problem zu lösen, verwendet man in Dataclasses für mutable Standardwerte wie Listen die Funktion `field` mit dem Parameter `default_factory`. Dadurch wird sichergestellt, dass jede Instanz ihre eigene Liste erhält.
from dataclasses import dataclass, field @dataclass class Student: name: str grades: list = field(default_factory=list) if __name__ == '__main__': student1 = Student(name='Alice') student2 = Student(name='Bob') student1.grades.append(90) print(student2.grades) # Output: [] - Jede Instanz hat ihre eigene, unabhängige Liste
Durch die Verwendung von `field(default_factory=list)` wird sichergestellt, dass jede Instanz von Student
eine eigene Liste erhält, und Änderungen an einer Instanz wirken sich nicht auf andere Instanzen aus.
Immutable Dataclasses
Wenn Sie möchten, dass eine Dataclass unveränderlich ist, können Sie sie durch Setzen des frozen
-Parameters in @dataclass
unveränderlich machen. In einer gefrorenen (frozen) Dataclass sind alle Attribute unveränderlich, und jede versuchte Änderung führt zu einem Fehler. Dies ähnelt dem Verhalten von By Value
, da die ursprüngliche Instanz nicht verändert werden kann.
Beispiel: Immutable Dataclass
from dataclasses import dataclass @dataclass(frozen=True) class ImmutablePerson: name: str age: int
In diesem Fall ist die Dataclass ImmutablePerson
unveränderlich, was bedeutet, dass jedes Attribut, sobald es gesetzt ist, nicht mehr geändert werden kann. Jeder Versuch, das Attribut age
oder name
zu ändern, führt zu einem Fehler.
Beispiel: Anwendung einer frozen Dataclass
from dataclasses import dataclass @dataclass(frozen=True) class Person: name: str age: int def birthday(person: Person) -> Person: """ Returns a new Person instance with the age incremented by 1. """ return Person(name=person.name, age=person.age + 1) if __name__ == '__main__': p = Person(name='Alice', age=30) print(f'Vor der Änderung: {p}') # Output: Vor der Änderung: Person(name='Alice', age=30) new_p = birthday(p) print(f'Nach der Änderung: {p}') # Output: Nach der Änderung: Person(name='Alice', age=30) print(f'Neue Instanz: {new_p}') # Output: Neue Instanz: Person(name='Alice', age=31)
Erläuterung:
Die Dataclass Person
ist als frozen
markiert, was sie unveränderlich macht.
Die Funktion birthday
ist eine pure function. Sie nimmt eine Instanz der Dataclass Person
als Eingabe und gibt eine neue Instanz zurück, wobei das age
-Attribut um eins erhöht wird.
Das Originalobjekt p
bleibt unverändert. Stattdessen wird eine neue Instanz new_p
mit dem geänderten Alter erstellt.
Vorteile:
- Keine Seiteneffekte: Da das Originalobjekt nicht verändert wird, gibt es keine ungewollten Änderungen am Zustand.
- Vorhersehbarkeit: Pure functions sind leichter zu verstehen und zu testen, da das Ergebnis nur von den Eingabewerten abhängt.
- Immutable Data: Die Verwendung von immutable Datenstrukturen verhindert unbeabsichtigte Modifikationen und erleichtert die Parallelisierung von Programmen.
Dieses Vorgehen ist besonders nützlich in Szenarien, in denen Datenintegrität und Vorhersagbarkeit des Programmverhaltens von hoher Bedeutung sind.
Zusammenfassung
In Python werden Objekte, einschließlich Dataclasses, immer By Reference
übergeben. Änderungen an den Attributen eines Objekts innerhalb einer Funktion wirken sich direkt auf das Originalobjekt aus. Um ungewollte Änderungen zu vermeiden, kann eine Dataclass als frozen
deklariert werden, was sie unveränderlich macht und vor unbeabsichtigten Modifikationen schützt. Zusätzlich ist es wichtig, bei der Verwendung von mutable Default-Werten, wie Listen, darauf zu achten, dass jede Instanz ihre eigene unabhängige Kopie erhält, indem `field(default_factory=list)` verwendet wird.
Tipp: Wenn Sie mutable Attribute in einer Dataclass verwenden, sollten Sie sorgfältig überlegen, ob die direkte Veränderung dieser Attribute innerhalb von Funktionen in Ihrem Programmdesign erwünscht ist. Verwenden Sie frozen
Dataclasses oder `field(default_factory=list)`, um unbeabsichtigte Änderungen zu verhindern.